设为首页 加入收藏

TOP

伙伴系统之避免碎片--Linux内存管理(十六)(三)
2019-09-01 23:08:58 】 浏览:121
Tags:伙伴 系统 避免 碎片 --Linux 内存 管理 十六
_UNMOVABLE], 首先后退到可回收页链表MIGRATE_RECLAIMABLE, 接下来到可移动页链表MIGRATE_MOVABLE, 最后到紧急分配链表MIGRATE_TYPES.

2.5 全局pageblock_order变量

全局变量和辅助函数尽管页可移动性分组特性总是编译到内核中,但只有在系统中有足够内存可以分配到多个迁移类型对应的链表时,才是有意义的。由于每个迁移链表都应该有适当数量的内存,内核需要定义”适当”的概念. 这是通过两个全局变量pageblock_order和pageblock_nr_pages提供的. 第一个表示内核认为是”大”的一个分配阶, pageblock_nr_pages则表示该分配阶对应的页数。如果体系结构提供了巨型页机制, 则pageblock_order通常定义为巨型页对应的分配阶. 定义在include/linux/pageblock-flags.h?v=4.7, line 44

#ifdef CONFIG_HUGETLB_PAGE

    #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE

        /* Huge page sizes are variable */
        extern unsigned int pageblock_order;

    #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

    /* Huge pages are a constant size */
        #define pageblock_order         HUGETLB_PAGE_ORDER

    #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

#else /* CONFIG_HUGETLB_PAGE */

    /* If huge pages are not used, group by MAX_ORDER_NR_PAGES */
    #define pageblock_order         (MAX_ORDER-1)

#endif /* CONFIG_HUGETLB_PAGE */

#define pageblock_nr_pages      (1UL << pageblock_order)

在IA-32体系结构上, 巨型页长度是4MB, 因此每个巨型页由1024个普通页组成, 而HUGETLB_PAGE_ORDER则定义为10. 相比之下, IA-64体系结构允许设置可变的普通和巨型页长度, 因此HUGETLB_PAGE_ORDER的值取决于内核配置.

如果体系结构不支持巨型页, 则将其定义为第二高的分配阶, 即MAX_ORDER - 1

/* If huge pages are not used, group by MAX_ORDER_NR_PAGES */
#define pageblock_order         (MAX_ORDER-1)

如果各迁移类型的链表中没有一块较大的连续内存, 那么页面迁移不会提供任何好处, 因此在可用内存太少时内核会关闭该特性. 这是在build_all_zonelists函数中检查的, 该函数用于初始化内存域列表. 如果没有足够的内存可用, 则全局变量page_group_by_mobility_disabled设置为0, 否则设置为1.

内核如何知道给定的分配内存属于何种迁移类型?

我们将在以后讲解, 有关各个内存分配的细节都通过分配掩码指定.

内核提供了两个标志,分别用于表示分配的内存是可移动的(__GFP_MOVABLE)或可回收的(__GFP_RECLAIMABLE).

2.6 gfpflags_to_migratetype转换分配标识到迁移类型

如果这些标志都没有设置, 则分配的内存假定为不可移动的. 辅助函数gfpflags_to_migratetype可用于转换分配标志及对应的迁移类型, 该函数定义在include/linux/gfp.h?v=4.7, line 266

static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
{
    VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
    BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
    BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);

    if (unlikely(page_group_by_mobility_disabled))
        return MIGRATE_UNMOVABLE;

    /* Group based on mobility */
    return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
}

linux-2.6.x的内核中转换分配标志及对应的迁移类型的辅助函数为allocflags_to_migratetype, 这个名字会有歧义的, 让我们误以为参数的标识中有alloc flags, 但是其实并不然, 因此后来的内核中将该函数更名为gfpflags_to_migratetype, 参见Rename it to gfpflags_to_migratetype()

在2.6.25中为如下接口

/* Convert GFP flags to their corresponding migrate type */
static inline int allocflags_to_migratetype(gfp_t gfp_flags)
{
    WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);

    if (unlikely(page_group_by_mobility_disabled))
        return MIGRATE_UNMOVABLE;

    /* Group based on mobility */
    return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
        ((gfp_flags & __GFP_RECLAIMABLE) != 0);
}

如果停用了页面迁移特性, 则所有的页都是不可移动的. 否则. 该函数的返回值可以直接用作free_area.free_list的数组索引.

2.7 pageblock_flags变量与其函数接口

最后要注意, 每个内存域都提供了一个特殊的字段, 可以跟踪包含pageblock_nr_pages个页的内存区的属性. 即zone->pageblock_flags字段, 当前只有与页可移动性相关的代码使用, 参见include/linux/mmzone.h?v=4.7, line 367

struct zone
{
#ifndef CONFIG_SPARSEMEM
    /*
     * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
     * In SPARSEMEM, this map is stored in struct mem_section
     */
    unsigned long       *pageblock_flags;
#endi
首页 上一页 1 2 3 4 5 下一页 尾页 3/5/5
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇alloc_page分配内存空间--Linux内.. 下一篇System.map文件的作用

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目