设为首页 加入收藏

TOP

Java里面为什么搞了双重检查锁,写完这篇文章终于真相大白了(一)
2023-07-26 08:16:04 】 浏览:67
Tags:Java 双重检 查锁 文章终 于真相 白了

img

双重检查锁定与延迟初始化

java 程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时程序员可能会采用延迟初始化。但要正确实现线程安全的延迟初始化需要一些技巧,否则很容易出现问题。比如,下面是非线程安全的延迟初始化对象的示例代码:

COPYpublic class UnsafeLazyInitialization {
    private static Instance instance;

    public static Instance getInstance() {
        if (instance == null) //1:A 线程执行 
            instance = new Instance(); //2:B 线程执行 
        return instance;
    }
}

在 UnsafeLazyInitialization 中,假设 A 线程执行代码 1 的同时,B 线程执行代码 2。此时,线程 A 可能会看到 instance 引用的对象还没有完成初始化(出现这种情况的原因见后文的“问题的根源”)。

对于 UnsafeLazyInitialization,我们可以对 getInstance() 做同步处理来实现线程安全的延迟初始化。示例代码如下:

COPYpublic class SafeLazyInitialization {
    private static Instance instance;

    public synchronized static Instance getInstance() {
        if (instance == null)
            instance = new Instance();
        return instance;
    }
}

由于对 getInstance() 做了同步处理,synchronized 将导致性能开销。如果 getInstance() 被多个线程频繁的调用,将会导致程序执行性能的下降。反之,如果 getInstance() 不会被多个线程频繁的调用,那么这个延迟初始化方案将能提供令人满意的性能。

在早期的 JVM 中,synchronized(甚至是无竞争的 synchronized)存在这巨大的性能开销。因此,人们想出了一个“聪明”的技巧:双重检查锁定(double-checked locking)。人们想通过双重检查锁定来降低同步的开销。下面是使用双重检查锁定来实现延迟初始化的示例代码:

COPYpublic class DoubleCheckedLocking {                 //1
    private static Instance instance;                    //2

    public static Instance getInstance() {               //3
        if (instance == null) {                          //4: 第一次检查 
            synchronized (DoubleCheckedLocking.class) {  //5: 加锁 
                if (instance == null)                    //6: 第二次检查 
                    instance = new Instance();           //7: 问题的根源出在这里 
            }                                            //8
        }                                                //9
        return instance;                                 //10
    }                                                    //11
}                                                        //12

如上面代码所示,如果第一次检查 instance 不为 null,那么就不需要执行下面的加锁和初始化操作。因此可以大幅降低 synchronized 带来的性能开销。上面代码表面上看起来,似乎两全其美:

  • 在多个线程试图在同一时间创建对象时,会通过加锁来保证只有一个线程能创建对象。
  • 在对象创建好之后,执行 getInstance() 将不需要获取锁,直接返回已创建好的对象。

双重检查锁定看起来似乎很完美,但这是一个错误的优化!在线程执行到第 4 行代码读取到 instance 不为 null 时,instance 引用的对象有可能还没有完成初始化。

问题的根源

前面的双重检查锁定示例代码的第 7 行(instance = new Singleton();)创建一个对象。这一行代码可以分解为如下的三行伪代码:

COPYmemory = allocate();   //1:分配对象的内存空间 
ctorInstance(memory);  //2:初始化对象 
instance = memory;     //3:设置 instance 指向刚分配的内存地址

上面三行伪代码中的 2 和 3 之间,可能会被重排序(在一些 JIT 编译器上,这种重排序是真实发生的,详情见参考文献 1 的“Out-of-order writes”部分)。2 和 3 之间重排序之后的执行时序如下:

COPYmemory = allocate();   //1:分配对象的内存空间 
instance = memory;     //3:设置 instance 指向刚分配的内存地址 
                       // 注意,此时对象还没有被初始化!
ctorInstance(memory);  //2:初始化对象

根据《The Java Language Specification, Java SE 7 Edition》(后文简称为 java 语言规范),所有线程在执行 java 程序时必须要遵守 intra-thread semantics。intra-thread semantics 保证重排序不会改变单线程内的程序执行结果。换句话来说,intra-thread semantics 允许那些在单线程内,不会改变单线程程序执行结果的重排序。上面三行伪代码的 2 和 3 之间虽然被重排序了,但这个重排序并不会违反 intra-thread semantics。这个重排序在没有改变单线程程序的执行结果的前提下,可以提高程序的执行性能。

为了更好的理解 intra-thread semantics,请看下面的示意图(假设一个线程 A 在构造对象后,立即访问这个对象):

img

如上图所示,只要保证 2 排在 4 的前面,即使 2 和 3 之间重排序了,也不会违反 intra-thread semantics。

下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:

img

由于单线程内要遵守 intra-thread semantics,从而能保证 A 线程的程序执行结果不会被改变。但是当线程 A 和 B 按上图的时序执行时,B 线程将看到一个还没有被初始化的对象。

注:本文统一用红色的虚箭线标识错误的读操作,用绿色的虚箭线标识正确的读操作。

回到本文的主题,DoubleCheckedLocking 示例代码的第 7 行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程 B 就有可能在第 4 行判断 instance 不为 null。线程 B 接下来将访问 instance 所引用的对象,但此时这个对象可能还没有被 A 线程初始化!下面是这个场景的具体执行时序:

时间 线程 A 线程 B
t1 A1:分配对象的内存空间
t2 A3:设置 instance 指向内存空间
t3 B1:判断 instance 是否为空
t4 B2:由于 instance 不为 null,线程 B 将访问 instance 引用的对象
t5 A2:初始化对象
t6 A4:访问 instance 引用的对象

这里 A2 和 A3 虽然重排序了,但 java 内存模型的 intra-thread semantics 将确保 A2 一定会排在 A4 前面执行。因此线程 A 的 intra-thread semantics 没有改变。但 A2 和 A3 的重排序,将导致线程 B 在 B1 处判断出 instance 不为空

首页 上一页 1 2 3 下一页 尾页 1/3/3
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇Dubbo 入门系列之基于 Dubbo API .. 下一篇java基础(一):java介绍、环境..

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目