设为首页 加入收藏

TOP

空间数据挖掘常用方法(二)
2015-07-24 11:55:41 来源: 作者: 【 】 浏览:22
Tags:空间 数据挖掘 常用 方法
Cloud Transform)和不确定性推理 (Reasoning under Uncertainty)等主要内容。运用云理论进行空间数据挖掘,可进行概念和知识的表达、定量和定性的转化、概念的综合与分解、从数据中生成概念和概念层次结构、不确定性推理和预测等。

12、图像分析和模式识别 (Image Analysis and Pattern Recognition)方法

空间数据库 (数据仓库)中含有大量的图形图像数据,一些图像分析和模式识别方法可直接用于挖掘数据和发现知识,或作为其它挖掘方法的预处理方法。用于图像分析和模式识别的方法主要有:决策树方法、神经元网络方法、数学形态学方法、图论方法等。

13、证据理论 (Evidence Theory)

由Schafer发展起来的证据理论是经典概率论的扩展。证据理论又称Dempster-Schafer理论,它是Dempster在20世纪60年代提出,在70年代中期由Schafer进一步发展,形成处理不确定性信息的证据理论,其重要贡献在于严格区分不确定和不知道的界线。证据理论将实体分为确定部分和不确定部分,可以用于基于不确定性的空间数据挖掘。利用证据理论的结合规则、可以根据多个带有不确定性的属性进行决策挖掘。证据理论发展了更一般性的概率论,却不能解决矛盾证据或微弱假设支持等问题。

14、遗传算法 (Genetic Algorithms)

遗传算法(简称GA)是模拟生物进化过程的算法,最先由美国的John Holland教授于20世纪60年代初提出,其本质是一种求解问题的高效并行全局搜索方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。遗传算法已在优化计算、分类、机器学习等方面发挥了显著作用。数据挖掘中的许多问题,如分类、聚类、预测等知识的获取,可以表达或转换成最优化问题,进而可以用遗传算法来求解。

15、数据可视化方法 (Data Visualization Approach)

人类的可视化能力,允许人类对大量抽象的数据进行分析。人的创造性不仅取决于人的逻辑思维,而且取决于人的形象思维。人脑的空间认知分析能力目前尚无法全部用计算机代替,因此可视化技术为知识发现提供了有力的帮助。为了了解数据之间的相互关系及发展趋势,人们可以求助于可视化技术。海量的数据只有通过可视化技术变成图形或图像,才能激发人的形象思维―― 从表面上看来是杂乱无章的海量数据中找出其中隐藏的规律。数据可视化技术将大量数据以多种形式表示出来,帮助人们寻找数据中的结构、特征、模式、趋势、异常现象或相关关系等。从这个角度讲,数据可视化技术不仅仅是一种计算方法,更是看见不可见事物或现象的一种重要手段和方法。

16、地学信息图谱方法 (Geo-informatics Graphic Methodology)

地学信息图谱是地球信息的重要表现形式与研究手段,也是地球信息科学的重要组成部分。地学信息图谱综合了景观综合图的简洁性和数学模型的抽象性,是现代空间技术与我国传统研究成果结合的产物,可反演过去、预测未来。图是指地图、图像、图解,谱是指不同类别事物特征有规则的序列编排。图谱是指经过深入分析与高度综合,反映事物和现象空间结构特征与时空序列变化规律的图形信息处理与显示手段。地球信息图谱是由遥感、地图数据库与地理信息系统(或数字地球)的大量地球信息,经过图形思维与抽象概括,并以计算机多维动态可视化技术显示地球系统及各要素和现象的宏观、中观与微观的时空变化规律;同时经过中间模型与地学认知的深入分析研究,进行推理、反演与预测,形成对事物和现象更深层次的认识,有可能总结出重要的科学规律。地学信息图谱不仅应用于数据挖掘,而且服务于科学预测与决策方案。

地学信息图谱具有以下4个重要功能:①借助图谱可以反演和模拟时空变化;②可利用图的形象表达能力,对复杂现象进行简洁的表达;③多维的空间信息可展示在二维地图上,从而大大减小了模型模拟的复杂性;④在数学模型的建立过程中,图谱有助于模型构建者对空间信息及其过程的理解。

地学信息图谱是形、数、理的有机结合,是试图从形态来反演空间过程的一种研究复杂系统的方法论。地学信息图谱中的空间图形思维、分形分维等方法均可直接用于空间数据挖掘领域。目前,地学信息图谱的基本理论及其方法体系还不完善,还有待于进一步研究。

17、计算几何方法 (Computer Geometry Methods)

1975年,Shamos和Hoey利用计算机有效地计算平面点集Voronoi图,并发表了一篇著名论文,从此计算几何诞生了。计算几何中的研究成果已在计算机图形学、化学、统计分析、模式识别、空间数据库以及其它许多领域得到了广泛应用。计算几何研究的典型问题包括几何基元、几何查找和几何优化等。其中,几何基元包括凸壳和Voronoi图、多边形的三角剖分、划分问题与相交问题:几何查找包括点定位、可视化、区域查找等问题;几何优化包括参数查找和线性规划。

上述每一种方法都有一定的适用范围。在实际应用中,为了发现某类知识,常常要综合运用这些方法。空间数据挖掘方法还要与常规的数据库技术充分结合。总之,空间数据挖掘利用的技术越多,得出的结果精确性就越高,因此,多种方法的集成也是空间数据挖掘的一个有前途的发展方向。

以下是对云模型和其在缺损数据的推理预测中的应用做一简述。

云模型:云是用语言值描述某个定性概念与其数值表示的不确定性转换的模型。简单地说,云模型是定性定量间转换的不确定性模型。该模型用期望Ex,熵En,超熵He三个数值来表示,把模糊性和随机性完全集成到一起,构成定性和定量间的映射,作为表示的基础。期望值Ex是概念在论域中的中心值;熵En是定性概念模糊度的度量,反映了在论域中可被这个概念所接受的数值范围熵越大,概念所接受的数值范围也越大,概念越模糊。超熵He是熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。超熵He反映了云滴的离散程度,超熵越大,离散度越大,隶属度的随机性越大。

设U 是一个用精确数值表示的论域(一维的、二维的或多维的),U 上对应着定性概念?,对于论域中的任意一个元素x,都存在一个有稳定倾向的随机数y=μA(x),叫作x 对概念? 的确定度,x 在U上的分布称为云模型,简称为云。云由许许多多个云滴组成,一个云滴是定性概念在数量上的一次实现,单个云滴可能无足轻重,在不同的时刻产生的云的细节可能不尽相同,但云的整体形状反映了定性概念的基本特征。云的“厚度”是不均匀的,腰部最分散,“厚度”最大,而顶部和底部汇聚性好,“厚度”小。云的“厚度”反映了确定度的随机性的大小,靠近概念中心或远离概念中心处,确定度的随机性较小,而离概念中心不近不远的位置确定度的随机性大,这与人的主观感受相一致。

云的数字特征用期望Ex、熵En 和超熵He 来表征,它们反映了定性概念? 整体上的定量特征。

期望Ex:是概念在论域中的中心值,在数域空间最能够代表定性概念? 的点,即这个概念量化的最典型样本点,通常是云重心对应的x 值,它应该百分之百地隶属于这个定性概念。Ex 反映了相应的定性知识的信息中心值。

熵En:熵反映定性概念? 的不确定性。一方面,熵反映了在数域空间可以被语言值? 接受的云滴群的范围的大小,即模糊度,是定性概念亦此亦彼性的度

首页 上一页 1 2 3 下一页 尾页 2/3/3
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇mysql中遇到1366错误的解决办法 下一篇MHA配置文件样本描述

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·Java多线程基础 - 华 (2025-12-24 13:20:10)
·深入解读Java多线程 (2025-12-24 13:20:08)
·Spring Boot 中文文档 (2025-12-24 13:20:04)
·如何理解智能指针? (2025-12-24 12:48:26)
·c++是否应避免使用普 (2025-12-24 12:48:23)