设为首页 加入收藏

TOP

16.二叉排序树(一)
2015-07-24 12:13:50 来源: 作者: 【 】 浏览:528
Tags:16. 排序
一、二叉排序树 如果要查找的数据集是有序线性表且是顺序存储的,查找可以用折半、插值、斐波那契等查找算法来实现。然后,由于有序,当我们在插入和删除操作上,就需要耗费大量的时间。下面将要学习的二叉排序树,就是一种既可以使得插入和删除效率不错,又可以比较高效率地实现查找的算法。为此,构造一棵二叉排序树的目的并不是为了排序,而是为了提供查找和插入删除关键字的速度。 1.二叉排序树概念 二叉排序树(Binary Sort Tree),又称为二叉查找树,或者是一棵空树,或者是具有下列性质的二叉树。 ◆若它的左子树不空,则左子树上所有结点的值均小于它的根结构(双亲结点)的值; ◆若它的右子树不空,则右子树上所有结点的值均大于它的根结点(双亲结点)的值; ◆它的左、右子树也分别为二叉排序树。 2.二叉树结点结构
/*二叉树的二叉链表结点结构定义*/
typedef struct BiTNode                        //结点结构
{
    int data;                                            //结点数据
    Struct BiTNode *lchild,*rchild;       //左右孩子指针
}BiTNode,*BiTree;   
二、二叉排序树操作算法 1.二叉排序树的查询操作
/*递归查找二叉排序树T中是否存在key,
   * 指针f指向T的双亲,其初始调用值为NULL
    *若查找成功,则指针p指向该数据元素结点,并返回TRUE;否则指针p指向查找路径上访问的最后一个结点并返回FALSE*/
Status SearchBST(BiTree T,int key,BiTree f,BiTree *p)
{
    if(!T)                            //查找不成功(为空树)
    {
            *p=f;
            return FALSE;
    }
    else if(key==T->data)  //查找成功
    {
            *p=T;
            return TRUE;
    }
    else if(keydata)
            return SearchBST(T->lchild,key,T,p);        //在左子树继续查找
    else
            return SearchBST(T->rchild,key,T,p);        //在右子树继续查找  
}
实例: 假如有一数据集合={62,88,58,47,35,73,51,99,37,93},查找的关键字key=93。 使用二叉排序树查找算法步骤如下: ①根据二叉排序树定义将该数据集合构造成一棵二叉排序树(中序遍历); \
②调用二叉排序树查询算法SearchBST(T,93,NULL,P)查询关键字,其中,SearchBST函数是一个可递归运行的函数,参数T是一个二叉树链表、key代表要查询的关键字、二叉树f指向T的双亲。当T指向根结点时,f的初值就为NULL,它在递归时有用,最后的参数p是为了查找成功后可以得到查找到的结点位置。 ③ if(!T){ .... }语句。用来判断当前二叉树是否到叶子结点,此时当前T指向根结点62的位置,由于T不为空,故该语句片段不执行。 ④esle if(key==T->data)语句。即查找到相匹配的关键字执行语句,显然93!=62,故该语句片段不执行。 ⑤else if(keydata)语句。即当要查找关键字小于当前结点时执行语句,由于93>62,故该语句片段不执行。 ⑥else{....}语句。即当即当要查找关键字大于当前结点时执行语句,93>62,所以以递归调用SearchBST(T->rchild,key,T,p)。此时,T指向了62的右孩子88,f指向88的双亲结点,即62。如图: \
⑦此时第二层SearchBST,因93比88大,所以执行else{....}语句,再次递归调用SearchBST(T->rchild,key,T,p)。此时T指向了88的右孩子99。 \
\ ⑧此时第三层SearchBST,因93比99小,所以执行else if(keydata)语句,再次递归调用SearchBST(T->lchild,key,T,p)。此时T指向了99的左孩子93。 \
⑨第四层SearchBST,因key等于T->data,所以执行第10~11行,此时指针p指向93所在的结点并返回True到第三层、第二层、第一层,最终返回函数True。 2.二叉排序树的插入操作 所谓二叉排序树的插入,即将关键字放到树中的合适位置。 (1)二叉排序树的插入算法
/*当二叉排序树T中不存在关键字等于key的数据元素时,
 *    插入key并返回TRUE,否则返回FALSE*/
Status InsertBST(BiTree *T,int key)
{
    BiTree p,s;
    /*调用查找函数查找是否存在该关键字*/
    //a.若查找不成功
    if(!SearchBST(*T,key,NULL,&p))    
    {
          s=(BiTree)malloc(sizeof(BiTNode));    //为结点s开辟一段内存空间
          s->data=key;                                       //将关键字存放到s指向结点的数据域中
          s->lchid=s->rchild=NULL;                //初始化结点s的左右指针域
         if(!p)
                *T=s;                //插入s为新的根结点
         else if(keydata)//若关键字小于p结点数据值,插入s为结点p的左孩子
                p->lchild = s;   
          else                        //若关键字大于p结点数据值,插入s为结点p的右孩子
                p->rchild=s;   
    }
    /*树中已有关键字相同的结点,不再插入*/
    else
    {
            return FALSE;    
    }
}
举例:假如我们调用函数是"InsertBST(T,93);",那么结果就是FALSE;假如调用函数为"InsertBST(T,95);",那么一定是就是在93的结点增加一个右孩子95,并返回TRUE。需要注意的是,由于插入算法事先调用了SearchBST(*T,key,NULL,&p)查找算法且使用中序遍历二叉树,最终我们可知指针p指向的结点为93. 3.构建二叉排序树算法
/*假如有一个数据集={62,88,58,47,35,73,51,99,37,93}
    * 构建一个二叉排序树*/
int i;
int a[0]={62,88,58,47,35,73,51,99,37,93};
BiTree T=NULL;
for(i=0;i<10;i++)
{
    InsertBST(&T,a[i]);
}
4.二叉排序树删除操作算法 \
(1)采用递归方式对二叉排序树T查找key,找到后调用Delete函数删除该结点 /*若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点 * 并返回TRUE;否则返回FALSE*/
Status DeleteBST(BiTree *T,int key)
{
     if(!*T)    //不存在关键字等于key的数据元素
            return FALSE;
    else
    {
        if(key==(*T)->data)    //找到关键字等于key的数据元素
                return Delete(T);    //调用Delete函数删除该结点
        else if(key<(*T)->data)
                return DeleteBST(&(*T)->lchild,key);    
        else
                return DeleteBST(&(*T)->rchild,key);
    }   
}
(2)Delete删除算法
/*从二叉排序树中删除结点p,并重接它的左或右子树*/
首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇系统改变号(SCN)的详解 下一篇数据库调优教程(二)慢查询数据..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: