设为首页 加入收藏

TOP

数据仓库基础术语名词一览(二)
2015-11-21 01:26:35 来源: 作者: 【 】 浏览:3
Tags:数据 仓库 基础 术语 名词 一览
只有多个维度外键。非事实型事实表通常用来跟踪一些事件或者说明某些活动的范围。下面举例来进行说明。

第一类非事实型事实表是用来跟踪事件的事实表。例如:学生注册事件,学校需要对学生按学期进行跟踪。维度表包括学期维度、课程维度、系维度、学生维度、注册专业维度和取得学分维度,而事实表是由这些维度的主键组成,事实只有注册数,并且恒为1。这样的事实表可以回答大量关于大学开课注册方面的问题,主要是回答各种情况下的注册数。

第二类非事实型事实表是用来说明某些活动范围的事实表。例如:促销范围事实表。通常销售事实表可以回答如促销商品的销售情况,但是对于那些没有销售出去的促销商品没法回答。这时,通过建立促销范围事实表,将商场需要促销的商品单独建立事实表保存。然后,通过这个促销范围事实表和销售事实表即可得出哪些促销商品没有销售出去。这样的促销范围事实表只是用来说明促销活动的范围,其中没有任何事实度量。

合并事实表--consolidated/ merged fact table

在数据仓库领域有一个概念叫merged fact table,或者consolidated fact table,中文一般都翻译为“合并事实表”。合并事实表是将不同事实表的事实合并到同一张事实表的建模方法,合并的事实要保证在相同的粒度。

这种建模方法通常被用来横跨多个业务主题域来建立数据集市,Kimball将这样的数据集市称为第二级的数据集市。使用合并事实表技术,可以避免性能较差的交叉探察操作。

但是,这种合并事实表和使用交叉探察操作还有着细微的不同,在一些基础表中没有记录的时候,合并事实表中可能会存储一条记录,字段值保存为零。

合并事实表可以给数据仓库带来很大的性能提升,提供的跨主题的事实数据也给用户带来了很大的方便。但是,合并事实表给ETL工作带来了较大的麻烦。对于合并事实表中涉及到的维度,需要在数据准备区保证它们是一致性维度。

缓慢变化维??slowly changing dimension

维度建模的数据仓库中,有一个概念叫Slowly Changing Dimensions,中文一般翻译成“缓慢变化维”,经常被简写为SCD。缓慢变化维的提出是因为在现实世界中,维度的属性并不是静态的,它会随着时间的流失发生缓慢的变化。这种随时间发生变化的维度我们一般称之为缓慢变化维,并且把处理维度表的历史变化信息的问题称为处理缓慢变化维的问题,有时也简称为处理SCD的问题。

处理缓慢变化维的方法通常分为三种方式。

第一种方式是直接覆盖原值。这样处理,最容易实现,但是没有保留历史数据,无法分析历史变化信息。第一种方式通常简称为“TYPE 1”。

第二种方式是添加维度行。这样处理,需要代理键的支持。实现方式是当有维度属性发生变化时,生成一条新的维度记录,主键是新分配的代理键,通过自然键可以和原维度记录保持关联。第二种方式通常简称为“TYPE 2”。

第三种方式是添加属性列。这种处理的实现方式是对于需要分析历史信息的属性添加一列,来记录该属性变化前的值,而本属性字段使用TYPE 1来直接覆盖。这种方式的优点是可以同时分析当前及前一次变化的属性值,缺点是只保留了最后一次变化信息。第三种方式通常简称为“TYPE 3”。

在实际建模中,我们可以联合使用三种方式,也可以对一个维度表中的不同属性使用不同的方式,这些,都需要根据实际情况来决定,但目的都是一样的,就是能够支持方便的分析历史变化情况。

即席查询??ad hoc queries

在数据仓库领域有一个概念叫Ad hoc queries,中文一般翻译为“即席查询”。即席查询是指那些用户在使用系统时,根据自己当时的需求定义的查询。

即席查询生成的方式很多,最常见的就是使用即席查询工具。一般的数据展现工具都会提供即席查询的功能。通常的方式是,将数据仓库中的维度表和事实表映射到语义层,用户可以通过语义层选择表,建立表间的关联,最终生成SQL语句。

即席查询与通常查询从SQL语句上来说,并没有本质的差别。它们之间的差别在于,通常的查询在系统设计和实施时是已知的,所有我们可以在系统实施时通过建立索引、分区等技术来优化这些查询,使这些查询的效率很高。而即席查询是用户在使用时临时生产的,系统无法预先优化这些查询,所以即席查询也是评估数据仓库的一个重要指标。

即席查询的位置通常是在关系型的数据仓库中,即在EDW或者ROLAP中。多维数据库有自己的存储方式,对即席查询和通常查询没有区别。

在一个数据仓库系统中,即席查询使用的越多,对数据仓库的要求就越高,对数据模型的对称性的要求也越高。对称性的数据模型对所有的查询都是相同的,这也是维度建模的一个优点。

交叉探察??drill across

在维度建模的数据仓库中,有一种操作叫Drill Across ,中文一般翻译为“交叉探查”。

在基于总线架构(Bus Architecture)的维度建模中,大部分的维度表是由事实表共有的。比如“营销事务事实表”和“库存快照事实表”就会有相同的维度表,“日期维度”、“产品维度”和“商场维度”。这时,如果有个需求是想按共有维度来对比查看销售和库存的事实,这时就需要发出两个SQL,分别查出按维度统计出的销售数据和库存数据。然后再基于共有的维度进行外连接,将数据合并。这种发出多路SQL再进行合并的操作就是交叉探查。

当这种交叉探查的需求很常用时,有一种建模方法可以避免交叉探查,就是合并事实表(Consolidated Fact Table)。合并事实表是指将位于不同事实表中处于相同粒度的事实进行组合的一种建模方法。即新建立一个事实表,它的维度是两个或多个事实表的相同维度的集合,事实是几个事实表中感兴趣的事实。这个事实表的数据和其他事实表的数据一样来自Staging Area。

合并事实表在性能和易用性上都比交叉探查要好,但是被组合的事实表必须处于相同的粒度和维度层次上。

角色模仿维度--role-playing dimensions

在数据仓库领域有一个概念叫Role-playing dimensions,中文一般翻译为“角色模仿维度”。角色模仿维度是为了处理一个维度在一个事实表中同时出现多次而使用的一种技术处理手段。

在建立了角色模仿维度以后,在底层只有一个物理表存在,但是针对这个物理表会建立多个角色提供给数据访问工具,而且对数据访问工具来说这多个角色是不同的。例如对与累计快照事实表中会出现多个日期字段联接到日期维度。这时就可以针对日期维度建立多个角色模仿维度。

角色模仿维度的建立方法通常是使用视图来完成。例如订单日期维度表如下所示:

CREATE VIEW order_date(order_date_key, order_day_of_week, order_month, … )

AS SELECT data_key, day_of_week, month, … FROM DATA

使用同样的方式还可以建立多个不同日期的角色模仿维度。

聚集事实表--aggregated fact table

?

累计快照事实表--accumulating snapshot fact table

?

桥接表--bridge table

?

切片事实表--sliced fact table

在数据仓库领域有一个概念叫sliced fact table,中文一般

首页 上一页 1 2 3 4 5 下一页 尾页 2/5/5
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇供应商信息一览 下一篇维度模型数据仓库基础对象概念一览

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: