queue(&queue,&wait);
if(head==tail)
return count;
t=get_data();//调用get_data()函数,得到缓冲区中的数据,下面将给予详细的 介绍
out_buf[0]=t.status;
out_buf[1]=t.click;
copy_to_user(buf,&out_buf,sizeof(out_buf));//将得到的键值拷贝到用户数据区
return count;
}
}
很自然我们就应该要介绍get_data()函数的实现了,该函数的功能就是从我们定义的循环队列缓冲区中读出我们要的键值,所以其实很简单的如果理解循环队列的原理,在此不多加解释,大家应该具备一般的数据结构相关的知识吧
static KEY_EVENT get_data(void)
{
int last=tail
if(++tail==BUFSIZE)
tail=0;
return buf[last];
}
上面如果你看得懂得话,那么可以进入下面的学习了,主要介绍的是内核定时器的使用,利用等待队列实现阻塞型I/O,poll系统调用,异步通知方式,介绍完之后,我将给出一个应用实例,对于有使用过文件操作系统调用的来说,对我们所写的键盘驱动来说,他们基本上是一样的。废话少说,我们马上开始我们精彩的驱动开发!
六.内核定时器的使用
在该驱动中,我们假设对键盘的获取是以0.2s为周期执行。源代码如下
static struct timer_list timer;///////我们定义的定时器,也许你会问timer_list是什么来的,其实一看名称就应该就知道了,而为什么要用到list那么多定时器呢?其实在Linux中还有很多相同的定义,比如说信号,我们定义的也是信号集,你可以定义该list是一个元素的,也可以是多个的。所以对于timer_list就可以这样描述:在未来某一个特定时刻执行某一系列特定任务的功能。下面我们还会给出内核中timer_list的具体描述,^_^好像我的话又说多了
static int Keypad_starttimer(void)
{
init_timer(&timer);//初始化定时器结构
timer.function=Keypad_timer;//超时服务程序
timer.expires=jiffies+20;//当前时刻加0.2s
add_timer(&timer);
return 0;
}
///超时服务程序
static void Keypad_timer(unsigned long data)
{
read_xy();
}
/////////接下来说下timer-list这个数据结构,如果你不感兴趣的话可以跳过,该结构在include\Linux\timer.h中定义
struct timer_list
{
struct list_head entry;
unsigned long expries;
spinlock_t lock;
unsigned long magic;
void (*function)(unsigned long);
unsigner long data;
struct tvec_t_base_s *base;
}
七.利用等待队列实现阻塞型I\O
在用户程序执行读操作的时候有可能尚且没有数据可以读取,为此需要让read操作等待,直到有数据可以读取,这就是阻塞型i\o,阻塞型io可以通过使用进程休眠方法实现。在无数据可以读取的时候,采用等待队列让进程休眠,直到有数据到达的时候才唤醒进程完成数据的读操作。
在本驱动中的read,若循环队列缓冲区中没有数据,则进程进入休眠态,定时器函数每隔0.2s读取键值一次,将按键状态放入缓冲并且适时唤醒进程读取数据。
等待队列的使用流程如下:
1.声明一个等待队列
2.把当前进程加入到等待队列中
3.把进程的状态设置为TASK_INTERRUPTIBLE或TASK_UNINTERRUPTIBLE;
4.调用schedule,以让出cpu
5.检测所需要的资源是否可用,若是,把当前进程从等待队列中删除,否则转3循环
接下来我们在对read中有关等待队列阻塞实现做具体的解释
static ssize_t Keypad_read(struct file *filp,char *buf,ssize_t count,loff_t *l)
{
DECLEARE_WAITQUEUE(wait,current);//声明等待队列,将当前进程加入到等待队列中
KEY_EVENT t;
ulong out_buf[2];
if(head==tail)//当前循环队列中没有数据可以读取
{
if(filp->f_flags & O_NONBLOCK)//假如用户采用的是非堵塞方式读取
return _EAGAIN;
add_wait_queue(&queue,&wait);//将当前进程加入等待队列
current->state=TASK_INTERRUPTIBLE;//设置当前进程的状态
while((head==tail)&&!signal_pending(current))//假若还没有数据到循环队列并且当前进程没有受到信号(该类信号具体来说是未决的休眠)
{
shedule();//进程调度
current->state=TASK_INTERRUPTIBLE;
}
current->state=TASK_RUNNING;//该进程恢复执行
remove_wait_queue(&queue,&wait);//移出等待队列
if(head==tail)
return count;
t=get_data();//调用get_data()函数,得到缓冲区中的数据,下面将给予详细的 介绍
out_buf[0]=t.status;
out_buf[1]=t.click;
copy_to_user(buf,&out_buf,sizeof(out_buf));//将得到的键值拷贝到用户数据区
return count;
}
}
写得有些累了,等下再继续了,原来写这些东西真的是不容易得,平时看到网络上人家写了很多东西,不知道原来是那么累的,但是我还是会继续的
八.poll系统调用操作接口函数
当程序需要进行对多个文件读写时,如果某个文件没有准备好,则系统就会处于读写阻塞的状态,这影响了其他文件的读写,为了避免读写阻塞,一般可以在应用程序中使用poll或者select函数。当poll函数返回时,会给出一个文件是否可读写的标志,应用程序根据不同的标志读写相应的文件,实现非阻塞的读写,poll()函数通过poll系统调用,调用对应设备驱动的poll()接口函数,poll返回不同的标志,告诉主进程文件是否可以读写,这些返回标志存放在include\asm\poll.h中
标志
含义
POLLIN
如果设备无阻塞的读,就返回该值
POLLRDNORM
通常的数据已经准备好,可以读了,就返回
该值。通常的做法是会返回(POLLLIN|POLLRDNORA)
POLLRDBAND
如果可以从设备读出带外数据,就返回该值,它只可在Linux内核的某些网络代码中使用,通常不用在设备驱动程序中
POLLPRI
如果可以无阻塞的读取高优先级(带外)数据,就返回该值,返回该值会导致select报告文件发生异常,以为select八带外数据当作异常处理
POLLHUP
当读设备的进程到达文件尾时,驱动程序必须返回该值,