合理使用MySQL索引建立高质量查询语句(四)

2014-11-24 11:19:37 · 作者: · 浏览: 2
ct_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

  看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。

  情况七:查询条件中含有函数或表达式。

  很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

  虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='10000';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

  显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

  索引选择性与前缀索引

  既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引 答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

  第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

  另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:

  Index Selectivity = Cardinality / #T

  显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:

SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
| 0.0000 |
+-------------+

  title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。

  有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性 接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使 用。

  从图12可以看到employees表只有一个索引,那么如果我们想按名字搜索一个人,就只能全表扫描了:

EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len |