并行编程之多线程共享非volatile变量,会不会可能导致线程while死循环(一)

2014-11-24 13:23:32 · 作者: · 浏览: 96

背景

大家都知道线程之间共享变量要用volatile关键字。但是,如果不用volatile来标识,会不会导致线程死循环?比如下面的伪代码:

static int flag = -1;
void thread1(){
  while(flag > 0){
    //wait or do something
  }
}
void thread2(){
  //do something
  flag = -1;
}

线程1,线程2同时运行,线程2退出之后,线程1会不会有可能因为缓存等原因,一直死循环?

真实的世界

第一个坑:不靠谱的编绎器

直接上代码:

#include 
  
   
#include 
   
     #include 
    
      static int vvv = 1; void* thread1(void *){ sleep(2); printf("sss\n"); vvv = -1; return NULL; } int main() { pthread_t t; int re = pthread_create(&t, NULL, &thread1, NULL); if(re < 0){ perror("thread"); } while(vvv > 0){ // sleep(1); } return 0; }
    
   
  

在main函数里启动了一个线程thread1,thread1会等待一段时间后修改vvv = -1,然后当vvv > 0时,主线程会一直while循环等待。

理想的情况下是这样的:

主线程死循环等待,2秒之后thread1输出"sss",thread1退出,主线程退出。


保存为thread-study.c 文件,直接用gcc -O3 优化:

gcc thread-study.c -O3  -pthread -gstabs
再执行 ./a.out,可以发现控制台输出“sss”之后,会一直等待,再查看CPU使用率,一个核跑满了,说明主线程在死循环。

貌似就像上面所的,主线程因为缓存的原因,导致读取的 vvv 变量一直是旧的,从而死循环了。

但是否真的如此?

经过测试,除了O0级别(即完全不优化)不死循环外,O1,O2,O3级别,都会死循环。

再查看下O3级别的汇编代码(用 gcc -S thread-study.c 生成),main函数部分是这样的:

为了便于查看,手动加了注释。

main:
.LFB56:
	.cfi_startproc
	subq	$24, %rsp
	.cfi_def_cfa_offset 32
	xorl	%ecx, %ecx
	xorl	%esi, %esi
	movl	$_Z7thread1Pv, %edx
	movq	%rsp, %rdi
	call	pthread_create                              //int re = pthread_create(&t, NULL, &thread1, NULL);
	testl	%eax, %eax
	js	.L9
.L4:
	movl	_ZL3vvv(%rip), %eax         //while(vvv > 0){
	testl	%eax, %eax
	jle	.L5
.L6:
	jmp	.L6
	.p2align 4,,10
	.p2align 3
.L5:
	xorl	%eax, %eax
	addq	$24, %rsp
	.cfi_remember_state
	.cfi_def_cfa_offset 8
	ret
.L9:
	.cfi_restore_state
	movl	$.LC1, %edi
	call	perror                               //perror("thread");
	jmp	.L4
	.cfi_endproc

在L6标号那里,比较奇怪:

.L6:
jmp .L6

这里明显就是死循环,根本没有去尝试读取xxx的值。那么L4那个标号又是怎么回事?L4的代码是读取 vvv 变量再判断。但是它为什么没有在循环里?

再用gdb从汇编调试下,发现主线程的确是执行了死循环:

   0x0000000000400609 <+25>:    mov    0x200a51(%rip),%eax        # 0x601060 <_ZL3vvv>
   0x000000000040060f <+31>:    test   %eax,%eax
   0x0000000000400611 <+33>:    jle    0x400618 
  

   => 0x0000000000400613 <+35>: jmp 0x400613 
    
   0x0000000000400615 <+37>:    nopl   (%rax)
  

一个jmp指令原地跳转,自然是一个死循环,正对应上面汇编代码的L6部分。

相当于生成了这样的代码:

	if(vvv > 0){
		goto return
	}
	for(;;){
	}

可见gcc生成的代码有问题,它根本就没有生成正确的汇编代码。尽管这种优化是符合规范的,但我个人比较反感这种严重违反直觉的优化。

那么我们的问题还没有解决,接下来修改汇编代码,让它真正的像这样所预期的那样工作。只要简单地把L6的jmp跳转到L4上:

.L4:
	movl	_ZL3vvv(%rip), %eax
	testl	%eax, %eax
	jle	.L5
.L6:
	jmp	.L4
	.p2align 4,,10
	.p2align 3
这个才我们真正预期的代码。

再测试下这个修改过后的代码:

gcc thread-study.s -o test -pthread -gstabs -O3
./test
执行2秒之后,退出了。

说明,主线程并没有一直读取到旧的共享变量的值,符合预期。

加上volatile

给" vvv "变量加上volatile,即:

volatile static int vvv = 1;

重新编绎后,再跑下,发现正常了,2秒后进程退出。

查看下汇编代码,是这样的:

.L5:
	movl	_ZL3vvv(%rip), %eax
	testl	%eax, %eax
	setg	%al
	testb	%al, %al
	jne	.L5
这段汇编代码符合预期。

但是这里还是有点不对,volatile的特殊性在哪里?生成的汇编没有什么特别的指令,那它是如何“防止”了线程不缓存共享变量的?

网上流传的一种说法是使用volatile关键字之后,读取数据一定从内存中读取。

这种说法既是对的,也是错的。volatile关键字防止了编绎器优化,所以对于变量不会被放到寄存器里,或者被优化掉。但是volatile并不能防止CPU从Cache中读取数据。

所谓的“缓存”到底是什么

CPU内部有寄存器,有各级Cache,L1,L2,L3。我们来考虑下到底怎样才会出现线程共享变量被放到CPU的寄存器或者各级Cache的情况。

volatile阻止了编绎器把变量放到寄存器里,那么对线程共享变量的读取即直接的内存访问。

CPU Cache

CPU Cache放的正是内存的数据,像

movl _ZL3vvv(%rip), %eax

这样的指令,是会先从CPU Cache里查找,如果没有的话,再通过总线到内存里读取。

而现代CPU有多核,通常来说每个核的L1, L2 Cache是不共享的,L3 Cache是共享的。

那么问题就变成了:线程A修改了Cache中的内容,线程B是否会一直读取到的都是旧数据?

MESI协议

既然Cache数据会不一致,那么自然要有个机制,让它们之间重回一致。经典的Cache一致性协议是MESI协议。

MESI协议是使用的是Write Back策略,即当一个核内的Cache更新了,它只修改自己核内部的,并不是同步修改到其它核上。

在MESI协议里,