Railroad
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 554 Accepted Submission(s): 223
Problem Description A train yard is a complex series of railroad tracks for storing, sorting, or loading/unloading railroad cars. In this problem, the railroad tracks are much simpler, and we are only interested in combining two trains into one.
Figure 1: Merging railroad tracks.
The two trains each contain some railroad cars. Each railroad car contains a single type of products identified by a positive integer up to 1,000,000. The two trains come in from the right on separate tracks, as in the diagram above. To combine the two trains, we may choZ??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vc2UgdG8gdGFrZSB0aGUgcmFpbHJvYWQgY2FyIGF0IHRoZSBmcm9udCBvZiBlaXRoZXIgdHJhaW4gYW5kIGF0dGFjaCBpdCB0byB0aGUgYmFjayBvZiB0aGUgdHJhaW4gYmVpbmcgZm9ybWVkIG9uIHRoZSBsZWZ0LiBPZiBjb3Vyc2UsIGlmIHdlIGhhdmUgYWxyZWFkeSBtb3ZlZCBhbGwgdGhlIHJhaWxyb2FkIGNhcnMgZnJvbSBvbmUgdHJhaW4sIHRoZW4gYWxsIHJlbWFpbmluZyBjYXJzIGZyb20gdGhlIG90aGVyIHRyYWluIHdpbGwKIGJlIG1vdmVkIHRvIHRoZSBsZWZ0IG9uZSBhdCBhIHRpbWUuIEFsbCByYWlscm9hZCBjYXJzIG11c3QgYmUgbW92ZWQgdG8gdGhlIGxlZnQgZXZlbnR1YWxseS4gRGVwZW5kaW5nIG9uIHdoaWNoIHRyYWluIG9uIHRoZSByaWdodCBpcyBzZWxlY3RlZCBhdCBlYWNoIHN0ZXAsIHdlIHdpbGwgb2J0YWluIGRpZmZlcmVudCBhcnJhbmdlbWVudHMgZm9yIHRoZSBkZXBhcnRpbmcgdHJhaW4gb24gdGhlIGxlZnQuIEZvciBleGFtcGxlLCB3ZSBtYXkgb2J0YWluCiB0aGUgb3JkZXIgMSwxLDEsMiwyLDIgYnkgYWx3YXlzIGNob29zaW5nIHRoZSB0b3AgdHJhaW4gdW50aWwgYWxsIG9mIGl0cyBjYXJzIGhhdmUgYmVlbiBtb3ZlZC4gV2UgbWF5IGFsc28gb2J0YWluIHRoZSBvcmRlciAyLDEsMiwxLDIsMSBieSBhbHRlcm5hdGVseSBjaG9vc2luZyByYWlscm9hZCBjYXJzIGZyb20gdGhlIHR3byB0cmFpbnMuPGJyPgo8YnI+ClRvIGZhY2lsaXRhdGUgZnVydGhlciBwcm9jZXNzaW5nIGF0IHRoZSBvdGhlciB0cmFpbiB5YXJkcyBsYXRlciBvbiBpbiB0aGUgdHJpcCAoYW5kIGFsc28gYXQgdGhlIGRlc3RpbmF0aW9uKSwgdGhlIHN1cGVydmlzb3IgYXQgdGhlIHRyYWluIHlhcmQgaGFzIGJlZW4gZ2l2ZW4gYW4gb3JkZXJpbmcgb2YgdGhlIHByb2R1Y3RzIGRlc2lyZWQgZm9yIHRoZSBkZXBhcnRpbmcgdHJhaW4uIEluIHRoaXMgcHJvYmxlbSwgeW91IG11c3QgZGVjaWRlIHdoZXRoZXIKIGl0IGlzIHBvc3NpYmxlIHRvIG9idGFpbiB0aGUgZGVzaXJlZCBvcmRlcmluZywgZ2l2ZW4gdGhlIG9yZGVycyBvZiB0aGUgcHJvZHVjdHMgZm9yIHRoZSB0d28gdHJhaW5zIGFycml2aW5nIGF0IHRoZSB0cmFpbiB5YXJkLjxicj4KCiAKPGJyPgoKSW5wdXQKVGhlIGlucHV0IGNvbnNpc3RzIG9mIGEgbnVtYmVyIG9mIGNhc2VzLiBUaGUgZmlyc3QgbGluZSBjb250YWlucyB0d28gcG9zaXRpdmUgaW50ZWdlcnMgTjxzdWI+MTwvc3ViPiBOPHN1Yj4yPC9zdWI+IHdoaWNoIGFyZSB0aGUgbnVtYmVyIG9mIHJhaWxyb2FkIGNhcnMgaW4gZWFjaCB0cmFpbi4gVGhlcmUgYXJlIGF0IGxlYXN0IDEgYW5kIGF0IG1vc3QKIDEwMDAgcmFpbHJvYWQgY2FycyBpbiBlYWNoIHRyYWluLiBUaGUgc2Vjb25kIGxpbmUgY29udGFpbnMgTjEgcG9zaXRpdmUgaW50ZWdlcnMgKHVwIHRvIDEsMDAwLDAwMCkgaWRlbnRpZnlpbmcgdGhlIHByb2R1Y3RzIG9uIHRoZSBmaXJzdCB0cmFpbiBmcm9tIGZyb250IG9mIHRoZSB0cmFpbiB0byB0aGUgYmFjayBvZiB0aGUgdHJhaW4uIFRoZSB0aGlyZCBsaW5lIGNvbnRhaW5zIE48c3ViPjI8L3N1Yj4gcG9zaXRpdmUgaW50ZWdlcnMgaWRlbnRpZnlpbmcKIHRoZSBwcm9kdWN0cyBvbiB0aGUgc2Vjb25kIHRyYWluIChzYW1lIGZvcm1hdCBhcyBhYm92ZSkuIEZpbmFsbHksIHRoZSBmb3VydGggbGluZSBjb250YWlucyBOPHN1Yj4xPC9zdWI+JiM0MztOPHN1Yj4yPC9zdWI+IHBvc2l0aXZlIGludGVnZXJzIGdpdmluZyB0aGUgZGVzaXJlZCBvcmRlciBmb3IgdG |