设为首页 加入收藏

TOP

常用图算法实现--Hadoop
2019-01-11 00:22:16 】 浏览:23
Tags:常用 算法 实现 --Hadoop
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/crazy_scott/article/details/85677388

常用图算法在Hadoop上的实现

PageRank

数据准备

边:

1 2
1 15
2 3
2 4
2 5
2 6
2 7
3 13
4 2
5 11
5 12
6 1
6 7
6 8
7 1
7 8
8 1
8 9
8 10
9 14
9 1
10 1
10 13
11 12
11 1
12 1
13 14
14 12
15 1

网页:

1 2
2 5
3 1 
4 1
5 2
6 3
7 2
8 3
9 2
10 2
11 2
12 1
13 1
14 1
15 1

将这两个文件放入HDFS:

hdfs dfs -mkdir input/PageRank
hdfs dfs -put links.txt input/PageRank
hdfs dfs -put pagesHadoop.txt input/PageRank

编写程序

PageRank

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;

import static java.lang.StrictMath.abs;


public class PageRank {

    private static final String CACHED_PATH = "output/cache";
    private static final String ACTUAL_PATH = "output/Graph/HadoopPageRank";
    public static final int maxIterations = 500;
    public static final double threshold = 0.0001;
    public static final double dumping = 0.85;
    public static int pageNum = 0;

    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException, URISyntaxException {

        Configuration conf = new Configuration();
        String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
        if (otherArgs.length != 3) {
            System.err.println("Usage: PageRank <PagePath> <LinksPath> <PageNum>");
            System.exit(2);
        }

        int code = 0;

        Path PagePath = new Path(otherArgs[0]);
        Path LinksPath = new Path(otherArgs[1]);
        pageNum = Integer.parseInt(otherArgs[2]);

        conf.set("pageNum", pageNum + "");
        conf.set("dumping", dumping + "");


        Path cachePath = new Path(CACHED_PATH);
        Path actualPath = new Path(ACTUAL_PATH);

        // Delete output if exists
        FileSystem hdfs = FileSystem.get(conf);
        if (hdfs.exists(actualPath))
            hdfs.delete(actualPath, true); // recursive delete

        // prepare original rank
        for (int i = 1; i <= pageNum; i++)
            writeFileByline(ACTUAL_PATH + "/part-r-00000", i + " " + 1.0 / pageNum);


        int counter = 0;
        boolean changed = true;

        while (counter < maxIterations && changed) {

            // Delete output if exists
            if (hdfs.exists(cachePath))
                hdfs.delete(cachePath, true);
            //moving the previous iteration file to the cache directory
            hdfs.rename(actualPath, cachePath);

            conf.set("mapreduce.output.textoutputformat.separator", " ");
            conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");


            Job PageRank = Job.getInstance(conf, "PageRank " + (counter + ""));

            // add cache
            PageRank.addCacheFile(PagePath.toUri());

            PageRank.setJarByClass(PageRankMapper.class);
            FileInputFormat.addInputPath(PageRank, LinksPath);
            // set out put path : output/means
            FileOutputFormat.setOutputPath(PageRank, actualPath);

            PageRank.setMapperClass(PageRankMapper.class);
            PageRank.setInputFormatClass(KeyValueTextInputFormat.class);
            PageRank.setMapOutputKeyClass(IntWritable.class);
            PageRank.setMapOutputValueClass(DoubleWritable.class);

            PageRank.setReducerClass(PageRankReducer.class);
            PageRank.setOutputKeyClass(IntWritable.class);
            PageRank.setOutputValueClass(DoubleWritable.class);

            // Execute job
            code = PageRank.waitForCompletion(true)  0 : 1;

            //checking if the mean is stable
            BufferedReader file1Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(CACHED_PATH + "/part-r-00000"))));
            BufferedReader file2Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(ACTUAL_PATH + "/part-r-00000"))));
            for (int i = 0; i < pageNum; i++) {
                double rank1 = Double.parseDouble(file1Reader.readLine().split(" ")[1]);
                double rank2 = Double.parseDouble(file2Reader.readLine().split(" ")[1]);

                if (abs(rank1 - rank2) <= threshold) {
                    changed = false;
                } else {
                    changed = true;
                    break;
                }
            }
            file1Reader.close();
            file2Reader.close();
            counter++;
            System.out.println("PageRank finished iteration:>> " + counter + " || rank change: " + changed);

        }

        System.exit(code);

    }


    public static void writeFileByline(String dst, String contents) throws IOException {
        Configuration conf = new Configuration();
        Path dstPath = new Path(dst);
        FileSystem fs = dstPath.getFileSystem(conf);
        FSDataOutputStream outputStream = null;

        if (!fs.exists(dstPath)) {
            outputStream = fs.create(dstPath);
        } else {
            outputStream = fs.append(dstPath);
        }
        contents = contents + "\n";
        outputStream.write(contents.getBytes("utf-8"));
        outputStream.close();
    }

}

PageRankMapper

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

public class PageRankMapper extends Mapper<Text, Text, IntWritable, DoubleWritable> {

    Map<Integer, Double> rank = new HashMap<>();
    Map<Integer, Integer> pages = new HashMap<>();

    /**
     * reading the rank from the distributed cache
     */
    public void setup(Context context) throws IOException, InterruptedException {
        String lineString = null;
        // read rank file
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);
        FSDataInputStream hdfsInStream = fs.open(new Path("output/cache/part-r-00000"));
        InputStreamReader isr = new InputStreamReader(hdfsInStream, "utf-8");
        BufferedReader br = new BufferedReader(isr);

        while ((lineString = br.readLine()) != null) {
            String[] keyValue = StringUtils.split(lineString, " ");
            rank.put(Integer.parseInt(keyValue[0]), Double.parseDouble(keyValue[1]));

        }
        br.close();

        // read pages file
        String PagesFiles = context.getLocalCacheFiles()[0].getName();
        br = new BufferedReader(new FileReader(PagesFiles));
        while ((lineString = br.readLine()) != null) {
            String[] keyValue = StringUtils.split(lineString, " ");
            pages.put(Integer.parseInt(keyValue[0]), Integer.parseInt(keyValue[1]));
        }
        br.close();

    }

    public void map(Text from, Text to, Context context) throws IOException, InterruptedException {
        int fromPoint = Integer.parseInt(from.toString());
        int toPoint = Integer.parseInt(to.toString());
        double newRank = rank.get(fromPoint) * (1.0 / pages.get(fromPoint));

        context.write(new IntWritable(toPoint), new DoubleWritable(newRank));
    }

}

PageRankReducer

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class PageRankReducer extends Reducer<IntWritable, DoubleWritable, IntWritable, DoubleWritable> {



    public void reduce(IntWritable key, Iterable<DoubleWritable> values, Context context) throws IOException,
            InterruptedException {

        Configuration conf = context.getConfiguration();
        int pageNum = Integer.parseInt(conf.get("pageNum"));
        double dumping = Double.parseDouble(conf.get("dumping"));

        double rank = 0.0;
        for (DoubleWritable value : values)
            rank += value.get();

        rank = (1 - dumping) * (1.0/pageNum) + dumping * rank;

        context.write(key, new DoubleWritable(rank));

    }
}

思路:

  1. 首先指定KeyValueTextInputFormat,并指定page个数(在Hadoop中不太好直接求)
  2. 将每个顶点的出度文件pagesHadoop作为distributionCache,并首先将初始rank值写入cache文件中
  3. 每次读cache文件中的rank值,再进行计算,写入目标文件中,前后的rank值进行比较,若不满足阈值,将更新后的rank值写入cache中继续进行迭代

运行

hadoop jar PageRank.jar input/PageRank/pagesHadoop.txt input/PageRank/links.txt 15

可以发现,Hadoop执行循环操作,比spark、flink慢很多

查看结果:

54625612025

hdfs dfs -cat output/Graph/HadoopPageRank/*

54625616976

ConnectedComponents

数据准备

提供基本数据集,与PageRank一样,指定顶点和边

vertices.txt

准备一些顶点,例如1-16

edges.txt

准备一些连接边:

1 2
2 3
2 4
3 5
6 7
8 9
8 10
5 11
11 12
10 13
9 14
13 14
1 15
16 1

放入HDFS:

hdfs dfs -mkdir input/ConnectedComponents
hdfs dfs -put edges.txt input/ConnectedComponents

编写程序

ConnectedComponents

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;


public class ConnectedComponents {

    private static final String CACHED_PATH = "output/cache";
    private static final String ACTUAL_PATH = "output/Graph/HadoopConnectedComponents";
    public static final int maxIterations = 100;
    public static int verticesNum = 0;

    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException, URISyntaxException {

        Configuration conf = new Configuration();
        String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: PageRank <EdgesPath> <verticesNum>");
            System.exit(2);
        }

        int code = 0;

        Path EdgesPath = new Path(otherArgs[0]);
        verticesNum = Integer.parseInt(otherArgs[1]);

        conf.set("verticesNum", verticesNum + "");

        Path cachePath = new Path(CACHED_PATH);
        Path actualPath = new Path(ACTUAL_PATH);

        // Delete output if exists
        FileSystem hdfs = FileSystem.get(conf);
        if (hdfs.exists(actualPath))
            hdfs.delete(actualPath, true); // recursive delete

        // prepare original ConnectedComponents
        for (int i = 1; i <= verticesNum; i++)
            writeFileByline(ACTUAL_PATH + "/part-r-00000", i + " " + i);


        int counter = 0;
        boolean changed = true;

        while (counter < maxIterations && changed) {

            // Delete output if exists
            if (hdfs.exists(cachePath))
                hdfs.delete(cachePath, true);
            //moving the previous iteration file to the cache directory
            hdfs.rename(actualPath, cachePath);

            conf.set("mapreduce.output.textoutputformat.separator", " ");
            conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");


            Job PageRank = Job.getInstance(conf, "ConnectedComponents " + (counter + ""));


            PageRank.setJarByClass(ConnectedComponents.class);
            FileInputFormat.addInputPath(PageRank, EdgesPath);
            FileOutputFormat.setOutputPath(PageRank, actualPath);

            PageRank.setMapperClass(ConnectedComponentsMapper.class);
            PageRank.setInputFormatClass(KeyValueTextInputFormat.class);
            PageRank.setMapOutputKeyClass(IntWritable.class);
            PageRank.setMapOutputValueClass(IntWritable.class);

            PageRank.setReducerClass(ConnectedComponentsReduer.class);
            PageRank.setOutputKeyClass(IntWritable.class);
            PageRank.setOutputValueClass(IntWritable.class);

            // Execute job
            code = PageRank.waitForCompletion(true)  0 : 1;

            //checking if the mean is stable
            BufferedReader file1Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(CACHED_PATH + "/part-r-00000"))));
            BufferedReader file2Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(ACTUAL_PATH + "/part-r-00000"))));
            for (int i = 0; i < verticesNum; i++) {
                double component1 = Double.parseDouble(file1Reader.readLine().split(" ")[1]);
                double component2 = Double.parseDouble(file2Reader.readLine().split(" ")[1]);

                if (component1 == component2) {
                    changed = false;
                } else {
                    changed = true;
                    break;
                }
            }
            file1Reader.close();
            file2Reader.close();
            counter++;
            System.out.println("ConnectedComponents finished iteration:>> " + counter + " || component change: " + changed);

        }

        System.exit(code);

    }


    public static void writeFileByline(String dst, String contents) throws IOException {
        Configuration conf = new Configuration();
        Path dstPath = new Path(dst);
        FileSystem fs = dstPath.getFileSystem(conf);
        FSDataOutputStream outputStream = null;

        if (!fs.exists(dstPath)) {
            outputStream = fs.create(dstPath);
        } else {
            outputStream = fs.append(dstPath);
        }
        contents = contents + "\n";
        outputStream.write(contents.getBytes("utf-8"));
        outputStream.close();
    }

}

ConnectedComponentsMapper

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

public class ConnectedComponentsMapper extends Mapper<Text, Text, IntWritable, IntWritable> {

    Map<Integer, Integer> components = new HashMap<>();

    /**
     * reading the rank from the distributed cache
     */
    public void setup(Context context) throws IOException, InterruptedException {
        String lineString = null;
        // read rank file
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);
        FSDataInputStream hdfsInStream = fs.open(new Path("output/cache/part-r-00000"));
        InputStreamReader isr = new InputStreamReader(hdfsInStream, "utf-8");
        BufferedReader br = new BufferedReader(isr);

        while ((lineString = br.readLine()) != null) {
            String[] keyValue = StringUtils.split(lineString, " ");
            components.put(Integer.parseInt(keyValue[0]), Integer.parseInt(keyValue[1]));

        }
        br.close();
    }

    public void map(Text from, Text to, Context context) throws IOException, InterruptedException {
        int fromPoint = Integer.parseInt(from.toString());
        int toPoint = Integer.parseInt(to.toString());

        context.write(new IntWritable(toPoint), new IntWritable(components.get(fromPoint)));
        context.write(new IntWritable(fromPoint), new IntWritable(components.get(fromPoint)));
    }

}

ConnectedComponentsReduer

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class ConnectedComponentsReduer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {


    public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException,
            InterruptedException {

        Configuration conf = context.getConfiguration();
        int component = Integer.parseInt(conf.get("verticesNum"));

        for (IntWritable value : values) {
            if (value.get() < component)
                component = value.get();
        }

        context.write(key, new IntWritable(component));
    }
}

思路:

  1. 与PageRank一样,需要准备cache文件作为初始化连通分量,每次得到新的结果与cache文件进行比较,如果有更新则继续迭代
  2. 在map中,为了保证每个点都会出现在reduce中,将from点和to点都输入到reduce中

运行

hadoop jar ConnectedComponents.jar input/ConnectedComponents/edges.txt 16

迭代了6次:

54625876050

hdfs dfs -cat output/Graph/HadoopConnectedComponents/*

最后结果为:

54625872868

SingleSourceShortestPaths

数据准备

首先我们需要准备边和点

边:

1 2 12.0
1 3 13.0
2 3 23.0
3 4 34.0
3 5 35.0
4 5 45.0
5 1 51.0

放入HDFS:

hdfs dfs -mkdir input/SingleSourceShortestPaths
hdfs dfs -put edges.txt input/SingleSourceShortestPaths

编写程序

SingleSourceShortestPaths

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;

import static java.lang.StrictMath.abs;


public class SingleSourceShortestPaths {

    private static final String CACHED_PATH = "output/cache";
    private static final String ACTUAL_PATH = "output/Graph/HadoopSingleSourceShortestPaths";
    public static final int maxIterations = 100;
    private static final double EPSILON = 0.0001;
    public static int sourcePoint = 1;

    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException, URISyntaxException {

        Configuration conf = new Configuration();
        String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: PageRank <EdgesPath> <verticesNum>");
            System.exit(2);
        }

        int code = 0;

        Path EdgesPath = new Path(otherArgs[0]);
        int verticesNum = Integer.parseInt(otherArgs[1]);

        conf.set("verticesNum", verticesNum + "");

        Path cachePath = new Path(CACHED_PATH);
        Path actualPath = new Path(ACTUAL_PATH);

        // Delete output if exists
        FileSystem hdfs = FileSystem.get(conf);
        if (hdfs.exists(actualPath))
            hdfs.delete(actualPath, true); // recursive delete

        // prepare original distance
        for (int i = 1; i <= verticesNum; i++) {
            if (i == sourcePoint)
                writeFileByline(ACTUAL_PATH + "/part-r-00000", i + " " + 0.0);
            else
                writeFileByline(ACTUAL_PATH + "/part-r-00000", i + " " + Double.POSITIVE_INFINITY);
        }


        int counter = 0;
        boolean changed = true;

        while (counter < maxIterations && changed) {

            // Delete output if exists
            if (hdfs.exists(cachePath))
                hdfs.delete(cachePath, true);
            //moving the previous iteration file to the cache directory
            hdfs.rename(actualPath, cachePath);

            conf.set("mapreduce.output.textoutputformat.separator", " ");

            Job PageRank = Job.getInstance(conf, "SingleSourceShortestPaths " + (counter + ""));


            PageRank.setJarByClass(SingleSourceShortestPaths.class);
            FileInputFormat.addInputPath(PageRank, EdgesPath);
            FileOutputFormat.setOutputPath(PageRank, actualPath);

            PageRank.setMapperClass(SingleSourceShortestPathsMapper.class);
            PageRank.setMapOutputKeyClass(IntWritable.class);
            PageRank.setMapOutputValueClass(DoubleWritable.class);

            PageRank.setReducerClass(SingleSourceShortestPathsReducer.class);
            PageRank.setOutputKeyClass(IntWritable.class);
            PageRank.setOutputValueClass(DoubleWritable.class);

            // Execute job
            code = PageRank.waitForCompletion(true)  0 : 1;

            //checking if the mean is stable
            BufferedReader file1Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(CACHED_PATH + "/part-r-00000"))));
            BufferedReader file2Reader = new BufferedReader(new InputStreamReader(hdfs.open(new Path(ACTUAL_PATH + "/part-r-00000"))));
            for (int i = 0; i < verticesNum; i++) {
                double distance1 = Double.parseDouble(file1Reader.readLine().split(" ")[1]);
                double distance2 = Double.parseDouble(file2Reader.readLine().split(" ")[1]);

                if (abs(distance1 - distance2) < EPSILON) {
                    changed = false;
                } else {
                    changed = true;
                    break;
                }
            }
            file1Reader.close();
            file2Reader.close();
            counter++;
            System.out.println("SingleSourceShortestPaths finished iteration:>> " + counter + " || distance change: " + changed);

        }

        System.exit(code);

    }


    public static void writeFileByline(String dst, String contents) throws IOException {
        Configuration conf = new Configuration();
        Path dstPath = new Path(dst);
        FileSystem fs = dstPath.getFileSystem(conf);
        FSDataOutputStream outputStream = null;

        if (!fs.exists(dstPath)) {
            outputStream = fs.create(dstPath);
        } else {
            outputStream = fs.append(dstPath);
        }
        contents = contents + "\n";
        outputStream.write(contents.getBytes("utf-8"));
        outputStream.close();
    }

}

SingleSourceShortestPathsMapper

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;

public class SingleSourceShortestPathsMapper extends Mapper<Object, Text, IntWritable, DoubleWritable> {

    Map<Integer, Double> PointDistance = new HashMap<>();

    /**
     * reading the rank from the distributed cache
     */
    public void setup(Context context) throws IOException, InterruptedException {
        String lineString = null;
        // read rank file
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);
        FSDataInputStream hdfsInStream = fs.open(new Path("output/cache/part-r-00000"));
        InputStreamReader isr = new InputStreamReader(hdfsInStream, "utf-8");
        BufferedReader br = new BufferedReader(isr);

        while ((lineString = br.readLine()) != null) {
            String[] keyValue = StringUtils.split(lineString, " ");
            PointDistance.put(Integer.parseInt(keyValue[0]), Double.parseDouble(keyValue[1]));

        }
        br.close();
    }

    public void map(Object object, Text line, Context context) throws IOException, InterruptedException {

        String[] lineData = line.toString().split(" ");

        int fromPoint = Integer.parseInt(lineData[0]);
        int toPoint = Integer.parseInt(lineData[1]);
        double distance = Double.parseDouble(lineData[2]);

        if (distance < Double.POSITIVE_INFINITY) {
            context.write(new IntWritable(toPoint), new DoubleWritable(PointDistance.get(fromPoint) + distance));
            context.write(new IntWritable(fromPoint), new DoubleWritable(PointDistance.get(fromPoint)));
        } else
            context.write(new IntWritable(toPoint), new DoubleWritable(Double.POSITIVE_INFINITY));
    }
}

SingleSourceShortestPathsReducer

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class SingleSourceShortestPathsReducer extends Reducer<IntWritable, DoubleWritable, IntWritable, DoubleWritable> {


    public void reduce(IntWritable key, Iterable<DoubleWritable> values, Context context) throws IOException,
            InterruptedException {

        double dis = Double.POSITIVE_INFINITY;

        for (DoubleWritable value : values) {
            if (value.get() < dis)
                dis = value.get();
        }

        context.write(key, new DoubleWritable(dis));
    }
}

思想:

  1. 主要想法和之前一样,不再赘述
  2. 需要注意的是,每次map需要把前一次的结果也发给reduce进行比较,不然reduce出来的点个数会变少(例如原点就不会有)

运行

hadoop jar SingleSourceShortestPaths.jar input/SingleSourceShortestPaths/edges.txt 5

一共迭代了4次:

54626047558

查看结果

hdfs dfs -cat output/Graph/HadoopSingleSourceShortestPaths/*

54626050637


编程开发网
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇结合案例讲解MapReduce重要知识点.. 下一篇HDFS一     HDFS的sh..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

array(4) { ["type"]=> int(8) ["message"]=> string(24) "Undefined variable: jobs" ["file"]=> string(32) "/mnt/wp/cppentry/do/bencandy.php" ["line"]=> int(214) }