设为首页 加入收藏

TOP

『 Spark 』7. 使用 Spark DataFrame 进行大数据分析
2019-02-11 01:22:17 】 浏览:86
Tags:Spark 使用 DataFrame 进行 数据分析

『 Spark 』7. 使用 Spark DataFrame 进行大数据分析 | Taotao's Zone
http://litaotao.github.io/spark-dataframe-introductions=inner

写在前面
本系列是综合了自己在学习spark过程中的理解记录 + 对参考文章中的一些理解 + 个人实践spark过程中的一些心得而来。写这样一个系列仅仅是为了梳理个人学习spark的笔记记录,所以一切以能够理解为主,没有必要的细节就不会记录了,而且文中有时候会出现英文原版文档,只要不影响理解,都不翻译了。若想深入了解,最好阅读参考文章和官方文档。
其次,本系列是基于目前最新的 spark 1.6.0 系列开始的,spark 目前的更新速度很快,记录一下版本号还是必要的。 最后,如果各位觉得内容有误,欢迎留言备注,所有留言 24 小时内必定回复,非常感谢。
Tips: 如果插图看起来不明显,可以:1. 放大网页;2. 新标签中打开图片,查看原图哦;3. 点击右边目录上方的 present mode 哦。

  1. 什么是 spark dataframe
    先来看看官方原汁原味的文档是怎么介绍的:
    A DataFrame is a distributed collection of data
    organized into named columns. It is conceptually equivalent to a table in a relational database
    or a data frame in R/Python, but with richer optimizations
    under the hood. DataFrames can be constructed from a wide array of sources such as:structured data files, tables in Hive, external databases, or existing RDDs
    .
    我们可以看到 spark dataframe 的几个关键点:
    分布式的数据集
    类似关系型数据库中的

    table,或者 excel 里的一张 sheet,或者 python/R 里的 dataframe
    拥有丰富的操作函数,类似于 rdd 中的算子
    一个 dataframe 可以被注册成一张数据表,然后用 sql 语言在上面操作
    丰富的创建方式已有的RDD
    结构化数据文件
    JSON数据集
    Hive表
    外部数据库

  2. 为什么要用 spark dataframe
    为什么要用 dataframe,从细节实现上来说,这个问题比较复杂,不过,基本上下面这张图就能说明所有问题了:


    2569324-f22c54d60d6f264f.png
    spark-dataframe-flow.png

    但是,本文是从基础角度来说 spark dataframe,先不纠结这些细节问题,先了解一些基础的原理和优势,关于上面那张图里面的内容,看后期安排,也许在之后第 15 篇左右会专门讲。
    DataFrame API 是在 R 和 Python data frame 的设计灵感之上设计的,具有以下功能特性:
    从KB到PB级的数据量支持;
    多种数据格式和多种存储系统支持;
    通过Spark SQL 的 Catalyst优化器进行先进的优化,生成代码;
    通过Spark无缝集成所有大数据工具与基础设施;
    为Python、Java、Scala和R语言(SparkR)API;

简单来说,dataframe 能够更方便的操作数据集,而且因为其底层是通过 spark sql 的 Catalyst优化器生成优化后的执行代码,所以其执行速度会更快。总结下来就是,使用 spark dataframe 来构建 spark app,能:
write less : 写更少的代码
do more : 做更多的事情
faster : 以更快的速度

  1. 创建 dataframe
    因为 spark sql,dataframe,datasets 都是共用 spark sql 这个库的,三者共享同样的代码优化,生成以及执行流程,所以 sql,dataframe,datasets 的入口都是 sqlContext。可用于创建 spark dataframe 的数据源有很多,我们就讲最简单的从结构化文件创建 dataframe。


    2569324-2aa2c01cc6c56283.jpg
    spark-dataframe-3.jpg

    step 1 : 创建 sqlContext

下面是我自己创建 spark sc 都模版:
sc_conf = SparkConf()

sc_conf.setAppName("03-DataFrame-01")

sc_conf.setMaster(SPARK_MASTER)

sc_conf.set('spark.executor.memory', '2g')

sc_conf.set('spark.logConf', True)

sc_conf.getAll()

try:

sc.stop()

time.sleep(1)

except:

sc = SparkContext(conf=sc_conf)

sqlContext = SQLContext(sc)

step 2 : 创建 dataframe,从 json 文件

数据文件说明:中国 A 股上市公司基本信息,可以在这里取到:stock_5.json

2569324-bc5f4cdcc1b3b1a9.jpg
spark-dataframe-1.jpg

注:这里的 json 文件并不是标准的 json 文件,spark 目前也不支持读取标准的 json 文件。你需要预先把标准的 json 文件处理成 spark 支持的格式: 每一行是一个 json 对象。
比如说,官网的 people.json
这个例子,它要求的格式是:
{"name":"Yin", "address":{"city":"Columbus","state":"Ohio"}}

{"name":"Michael", "address":{"city":null, "state":"California"}}

但对这个文件来看,标准的 json 格式只有下面两种:
{"name": ["Yin", "Michael"],

"address":[

{"city":"Columbus","state":"Ohio"},

{"city":null, "state":"California"}

]

}

或者

[

{"name":"Yin", "address":{"city":"Columbus","state":"Ohio"}},

{"name":"Michael", "address":{"city":null, "state":"California"}}

]

所以在用 spark sql 来读取一个 json 文件的时候,务必要提前处理好 json 的文件格式,这里我们已经提前处理好了,文件如下所示:
{"ticker":"000001","tradeDate":"2016-03-30","exchangeCD":"XSHE","secShortName":"\u5e73\u5b89\u94f6\u884c","preClosePrice":10.43,"openPrice":10.48,"dealAmount":19661,"turnoverValue":572627417.1299999952,"highestPrice":10.7,"lowestPrice":10.47,"closePrice":10.7,"negMarketValue":126303384220.0,"marketValue":153102835340.0,"isOpen":1,"secID":"000001.XSHE","listDate":"1991-04-03","ListSector":"\u4e3b\u677f","totalShares":14308676200},

{"ticker":"000002","tradeDate":"2016-03-30","exchangeCD":"XSHE","secShortName":"\u4e07\u79d1A","preClosePrice":24.43,"openPrice":0.0,"dealAmount":0,"turnoverValue":0.0,"highestPrice":0.0,"lowestPrice":0.0,"closePrice":24.43,"negMarketValue":237174448154.0,"marketValue":269685994760.0,"isOpen":0,"secID":"000002.XSHE","listDate":"1991-01-29","ListSector":"\u4e3b\u677f","totalShares":11039132000}

df is short for dataframe

df = sqlContext.read.json('hdfs://10.21.208.21:8020/user/mercury/stock_5.json')

print df.printSchema()

print df.select(['ticker', 'secID', 'tradeDate', 'listDate', 'openPrice', 'closePrice',

'highestPrice', 'lowestPrice', 'isOpen']).show(n=5)

2569324-2d1ea5209eebcb4a.jpg
spark-dataframe-2.jpg
  1. 操作 dataframe
    同 rdd 一样,dataframe 也有很多专属于自己的算子,用于操作整个 dataframe 数据集,我们以后都简称为 dataframe api 吧,用 算子
    , DSL
    这类的称呼对不熟悉的人来说不易理解,下面这里是完整的 api 列表:spark dataframe api
    4.1 在 dataframe 上执行 sql 语句
    2569324-579c37b0e6b9a625.jpg
    spark-dataframe-4.jpg

    4.2 spark dataframe 与 pandas dataframe 转换
    一图胜千言啊:
    2569324-a7085ec9b854f569.jpg
    spark-dataframe-6.jpg

    纵观 spark 的诞生和发展,我觉得 spark 有一点做得非常明智:对同类产品的兼容。从大的方面来说,就像 spark 官网的这段话一样: Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.,spark 对 hadoop 系产品的兼容,让 hadoop 系的开发人员可以轻松的从 hadoop 转到 spark;从小的方面来说,spark 对一些细分工具也照顾 [兼容] 得很好,比如说 spark 推出了 dataframe,人家就可以支持 spark dataframe 和 pandas dataframe 的转换。
    熟悉 pandas dataframe 的都了解,pandas 里的 dataframe 可以做很多事情,比如说画图,保存为各种类型的文件,做数据分析什么的。我觉得,可以在 spark 的 dataframe 里做数据处理,分析的整个逻辑,然后可以把最后的结果转化成 pandas 的 dataframe 来展示。当然,如果你的数据量小,也可以直接用 pandas dataframe 来做。
    2569324-d30d5027fb830193.jpg
    spark-dataframe-7.jpg
  2. 一些经验
    5.1 spark json 格式问题
    spark 目前也不支持读取标准的 json 文件。你需要预先把标准的 json 文件处理成 spark 支持的格式: 每一行是一个 json 对象。
    5.2 spark dataframe 和 pandas dataframe 选择问题
    如果数据量小,结构简单,可以直接用 pandas dataframe 来做分析;如果数据量大,结构复杂 [嵌套结构],那么推荐用 spark dataframe 来做数据分析,然后把结果转成 pandas dataframe,用 pandas dataframe 来做展示和报告。
  3. Next
    ok,dataframe 简单的也说了几句了。我们先缓一缓,上个例子,再接着讲起他的,例子的话就用一个我正在实践的:用 spark 来做量化投资。
  4. 打开微信,扫一扫,点一点,棒棒的,_
    2569324-08b386ddaa7fa334.png
    wechat_pay_6-6.png

    参考文章
    Spark SQL, DataFrames and Datasets Guide
    Introducing DataFrames in Spark for Large Scale Data Science
    From Webinar Apache Spark 1.5: What is the difference between a DataFrame and a RDD
    用Apache Spark进行大数据处理——第二部分:Spark SQL
    An introduction to JSON support in Spark SQL
    Spark新年福音:一个用于大规模数据科学的API——DataFrame
    An introduction to JSON support in Spark SQL

本系列文章链接
『 Spark 』1. spark 简介
『 Spark 』2. spark 基本概念解析
『 Spark 』3. spark 编程模式
『 Spark 』4. spark 之 RDD
『 Spark 』5. 这些年,你不能错过的 spark 学习资源
『 Spark 』6. 深入研究 spark 运行原理之 job, stage, task
『 Spark 』7. 使用 Spark DataFrame 进行大数据分析
『 Spark 』8. 实战案例 | Spark 在金融领域的应用 | 日内走势预测
『 Spark 』9. 搭建 IPython + Notebook + Spark 开发环境
『 Spark 』10. spark 应用程序性能优化|12 个优化方法
『 Spark 』11. spark 机器学习
『 Spark 』12. Spark 2.0 特性介绍
『 Spark 』13. Spark 2.0 Release Notes 中文版


编程开发网
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇Hive常用设置 下一篇Spark与深度学习框架——H2O、dee..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

array(4) { ["type"]=> int(8) ["message"]=> string(24) "Undefined variable: jobs" ["file"]=> string(32) "/mnt/wp/cppentry/do/bencandy.php" ["line"]=> int(217) }