前言
原创文章,转载请注明出自唐巧的技术博客。
本文主要介绍Objective-C对象模型的实现细节,以及Objective-C语言对象模型中对isa swizzling和method swizzling的支持。希望本文能加深你对Objective-C对象的理解。
ISA指针
Objective-C是一门面向对象的编程语言。每一个对象都是一个类的实例。在Objective-C语言的内部,每一个对象都有一个名为isa的指针,指向该对象的类。每一个类描述了一系列它的实例的特点,包括成员变量的列表,成员函数的列表等。每一个对象都可以接受消息,而对象能够接收的消息列表是保存在它所对应的类中。
在XCode中按Shift + Command + O, 然后输入NSObject.h和objc.h,可以打开NSObject的定义头文件,通过头文件我们可以看到,NSObject就是一个包含isa指针的结构体,如下图所示:

按照面向对象语言的设计原则,所有事物都应该是对象(严格来说Objective-C并没有完全做到这一点,因为它有象int, double这样的简单变量类型)。在Objective-C语言中,每一个类实际上也是一个对象。每一个类也有一个名为isa的指针。每一个类也可以接受消息,例如[NSObject alloc],就是向NSObject这个类发送名为alloc消息。
在XCode中按Shift + Command + O, 然后输入runtime.h,可以打开Class的定义头文件,通过头文件我们可以看到,Class也是一个包含isa指针的结构体,如下图所示。(图中除了isa外还有其它成员变量,但那是为了兼容非2.0版的Objective-C的遗留逻辑,大家可以忽略它。)

因为类也是一个对象,那它也必须是另一个类的实列,这个类就是元类(metaclass)。元类保存了类方法的列表。当一个类方法被调用时,元类会首先查找它本身是否有该类方法的实现,如果没有,则该元类会向它的父类查找该方法,直到一直找到继承链的头。
元类(metaclass)也是一个对象,那么元类的isa指针又指向哪里呢?为了设计上的完整,所有的元类的isa指针都会指向一个根元类(root metaclass)。根元类(root metaclass)本身的isa指针指向自己,这样就行成了一个闭环。上面提到,一个对象能够接收的消息列表是保存在它所对应的类中的。在实际编程中,我们几乎不会遇到向元类发消息的情况,那它的isa指针在实际上很少用到。不过这么设计保证了面向对象的干净,即所有事物都是对象,都有isa指针。
我们再来看看继承关系,由于类方法的定义是保存在元类(metaclass)中,而方法调用的规则是,如果该类没有一个方法的实现,则向它的父类继续查找。所以,为了保证父类的类方法可以在子类中可以被调用,所以子类的元类会继承父类的元类,换而言之,类对象和元类对象有着同样的继承关系。
我很想把关系说清楚一些,但是这块儿确实有点绕,下面这张图或许能够让大家对isa和继承的关系清楚一些(该图片来自这里)

该图中,最让人困惑的莫过于Root Class了。在实现中,Root Class是指NSObject,我们可以从图中看出:
- NSObject类包括它的对象实例方法。
- NSObject的元类包括它的类方法,例如alloc方法。
- NSObject的元类继承自NSObject类。
- 一个NSObject的类中的方法同时也会被NSObject的子类在查找方法时找到。
类的成员变量
如果把类的实例看成一个C语言的结构体(struct),上面说的isa指针就是这个结构体的第一个成员变量,而类的其它成员变量依次排列在结构体中。排列顺序如下图所示(图片来自《iOS 6 Programming Pushing the Limits》):

为了验证该说法,我们在XCode中新建一个工程,在main.m中运行如下代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
#import
@interface Father : NSObject { int _father; } @end @implementation Father @end @interface Child : Father { int _child; } @end @implementation Child @end int main(int argc, char * argv[]) { Child * child = [[Child alloc] init]; @autoreleasepool { // ... } }
|
我们将断点下在 @autoreleasepool 处,然后在Console中输入p *child,则可以看到Xcode输出如下内容,这与我们上面的说法一致。
1
2
3
4
5
6
7
8
9
10
|
(lldb) p *child
(Child) $0 = {
(Father) Father = {
(NSObject) NSObject = {
(Class) isa = Child
}
(int) _father = 0
}
(int) _child = 0
}
|
可变与不可变
因为对象在内存中的排布可以看成一个结构体,该结构体的大小并不能动态变化。所以无法在运行时动态给对象增加成员变量。
相对的,对象的方法定义都保存在类的可变区域中。Objective-C 2.0并未在头文件中将实现暴露出来,但在Objective-C 1.0中,我们可以看到方法的定义列表是一个名为 methodLists的指针的指针(如下图所示)。通过修改该指针指向的指针的值,就可以实现动态地为某一个类增加成员方法。这也是Category实现的原理。同时也说明了为什么Category只可为对象增加成员方法,却不能增加成员变量。

需要特别说明一下,通过objc_setAssociatedObject 和 objc_getAssociatedObject方法可以变相地给对象增加成员变量,但由于实现机制不一样,所以并不是真正改变了对象的内存结构。
除了对象的方法可以动态修改,因为isa本身也只是一个指针,所以我们也可以在运行时动态地修改isa指针的值,达到替换对象整个行为的目的。不过该应用场景较少。
系统相关API及应用
isa swizzling的应用
系统提供的KVO的实现,就利用了动态地修改isa指针的值的技术。在苹果的文档中可以看到如下描述:
Key-Value Observing Implementation Details
Automatic key-value observing is implemented using a technique called isa-swizzling.
The isa pointer, as the name suggests, points to the object’s class which maintains a dispatch table. This dispatch table essentially contains pointers to the methods the class implements, among other data.
When an observer is r