设为首页 加入收藏

TOP

C语言数据结构与算法之深度、广度优先搜索(一)
2018-11-14 10:10:55 】 浏览:61
Tags:语言 数据结构 算法 深度 广度 优先 搜索

一、深度优先搜索(Depth-First-Search 简称:DFS)

1.1 遍历过程:

  (1)从图中某个顶点v出发,访问v。

  (2)找出刚才第一个被顶点访问的邻接点。访问该顶点。以这个顶点为新的顶点,重复此步骤,直到访问过的顶点没有未被访问过的顶点为止。

  (3)返回到步骤(2)中的被顶点v访问的,且还没被访问的邻接点,找出该点的下一个未被访问的邻接点,访问该顶点。

  (4)重复(2) (3) 直到每个点都被访问过,遍历结束。

例无权图:(默认为字母顺序)

  (1)从顶点A出发,访问该图

  (2)A的邻接点为BEF 以B为顶点开始访问 B的邻接点有FDC

  (3)B的所有的点均被访问结束,访问顶点C 顶点C还有F没有被访问

,结束遍历。

故遍历结果为 A->B->C->D->E->F

有向图:(默认为字母顺序)

  (1)从顶点A出发,访问该图

  (2)A 的出路顶点为B、D ,从顶点B 开始访问, B的出路只有E 结束此路;

  (3)开始访问顶点D,D的出路为顶点C和F 此时所有顶点都被遍历了,结束;

故遍历结果为: A->B->E->D->C->F

1.2 算法描述

自然语言:从图中的某个顶点v出发,访问v,并将visited[v]的值为true。

      一次检查v的所有邻接点w,如果visited[w]的值为flase,再从w出发进行递归遍历,直到图中的所有顶点都被访问过。

伪代码:

递归算法:

  visited[MVNum] <-- false

  count<--v,visited[v]<--true;

  for(w<--FirstAdjVex(G,v);w>=0;w<--NextAdjVex(G,v,w))

    if(!visited[w]  DFS[G,w]); 

采用邻接矩阵表示:

//输入图G(V,E),w表示v的邻接点

//输出邻接矩阵

count<--v; visited[v]<--true;

for(w<--0;w<G.vexnum;w++)

  if( (G.arcs[v][w]!=0)&&(!visited[w])  )

    DFS(G,w);

采用邻接表:

count<--v; visited[v]<--true;

p<--G.vertices[v].firstarc;

while(p!=NULL) do

  w<--p->adjvex;

  if(!visited[w]) do DFS(G,w)

  p<-- p->nextarc;

1.3用途:检查图的连通性和无环性

1.4总结:每个顶点至多进一次队列。遍历图的过程实质上市通过边找邻接点的过程。因此DFS时间复杂度,当用邻接矩阵表示图时为O(n2),其中n为图中的顶点数,当以邻接表做图的存储结构时,时间复杂度为O(e)这里e为 图中的边数,因此,当以邻接表为存储结构时,DFS时间复杂度为O(n+e)。

 

二、广度优先搜索(Breadth-First-Search 简称:BFS)

2.1遍历过程如下:

  (1)从图中某个顶点v出发,访问v。

  (2)依次访问v邻接各个未访问过的的所有顶点

  (3)接着从这些邻接顶点中继续访问它们的邻接顶点,遵循原则 先被访问的顶点的邻接点   先于 后被访问的顶点的邻接点 被访问。重复(3)步骤,直至所有的顶点都被访问过。

这里的“先被访问的顶点的邻接点 ”指的是在第二步骤先访问的顶点然后再先访问他的邻接点,包括后来的第三步骤也是这个意思,均为上一步骤 先访问的顶点然后再先访问他的邻接点。

例:图还是上面的那张无权图

我们按照字母ABCDEF这样的顺序来排列

(1)以A为顶点,开始遍历

(2)A的三个邻接点BEF 

(3)根据字母顺序 从点B开始访问 B的临界点有CD 此时,所有的顶点均被访问

故,遍历后的结果为 A ->B-> E-> F-> C-> D

若为有向图

(1)根据字母顺序,先从顶点A开始访问

(2)看顶点A的出路,邻接点为B,D 。根据字母顺序,下一个顶点从B开始

(3)顶点B的出路为E ,且E没有出路了,故此路结束

(4)回到和B点同一级的 还有顶点D还没有被访问 D的出路有两条,分别为邻接点C 和F ,此时所有的顶点都被访问过。

故 遍历后的顺序为 A->B->D->E->C->F

2.2算法描述

 自然语言:从图 中的某个顶点v出发,访问v,并将visited[v]的值为true,然后将v进队

     只要队列不空,则重复下述处理:

      队头顶点u出队

      依次检查u的所有邻接点w,如果visited[w]的值为false,则访问w,并将visited[w]的数值为true,然后将w入队;

伪代码: //BFS算法描述

    //输入:图G=<V,E>

    //输出:图G的BFS遍历后的先后次序

    visited[v] <--true

    InitQueue(Q);

    EnQueue(Q,v);

    while(!QueueEmpty(Q))  do

      DeQueue(Q,u);

      for(w <--FirstAdjVex(G,u);w>=0;w<--NextAdjVex(G,u,w))

      if(!visited[w]) do

        count<<w; visited[w] <--true;

        EnQueue(Q,w);

2.3用途:计算最短路径问题

2.4.总结:每个顶点至多进一次队列。遍历图的过程实质上市通过边找邻接点的过程。因此BFS时间复杂度,当用邻接矩阵表示图时为O(n2),其中n为图中的顶点数,当以邻接表做图的存储结构时,时间复杂度为O(e)这里e为 图中的边数,因此,当以邻接表为存储结构时,BFS时间复杂度为O(n+e)。

具体的代码实现如下所示:

#include<stdio.h>
#define N 20
#define TRUE 1
#define FALSE 0
int visited[N];        /*访问标志数组*/
typedef struct     /*队列的定义*/
{
    int data[N];
    int front,rear;
}queue;

typedef struct      /*图的邻接矩阵*/
{
    int vexnum,arcnum;
    char vexs[N];
    int arcs[N][N];
}
graph;

void createGraph(graph *g);      /*建立一个无向图的邻接矩阵*/
void dfs(int i,graph *g);          /*从第i个顶点出发深度优先搜索*/
void tdfs(graph *g);             /*深度优先搜索整个图*/
void bfs(int k,graph *g);          /*从第k个顶点广度优先搜索*/
void tbfs(graph *g);             /*广度优先搜索整个图*/
void init_visit();               /*初始化访问标识数组*/

/*建立一个无向图的邻接矩阵*/
void createGraph(graph *g)
{
    int i,j;
    char v;
    g->vexnu
编程开发网
首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇C语言实现输出杨辉三角 下一篇【转载++】fopen返回0(空指针NUL..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

array(4) { ["type"]=> int(8) ["message"]=> string(24) "Undefined variable: jobs" ["file"]=> string(32) "/mnt/wp/cppentry/do/bencandy.php" ["line"]=> int(214) }