设为首页 加入收藏

TOP

STL--H - Black Box(两个优先队列,求第k小的值)
2015-07-20 17:59:40 来源: 作者: 【 】 浏览:2
Tags:STL--H Black Box 两个 优先 队列 求第

H - Black Box Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

Let us examine a possible sequence of 11 transactions:

Example 1
N Transaction i Black Box contents after transaction Answer 
      (elements are arranged by non-descending)   

1 ADD(3)      0 3 
2 GET         1 3                                    3 
3 ADD(1)      1 1, 3 
4 GET         2 1, 3                                 3 
5 ADD(-4)     2 -4, 1, 3 
6 ADD(2)      2 -4, 1, 2, 3 
7 ADD(8)      2 -4, 1, 2, 3, 8 
8 ADD(-1000)  2 -1000, -4, 1, 2, 3, 8 
9 GET         3 -1000, -4, 1, 2, 3, 8                1 
10 GET        4 -1000, -4, 1, 2, 3, 8                2 
11 ADD(2)     4 -1000, -4, 1, 2, 2, 3, 8   

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.


Let us describe the sequence of transactions by two integer arrays:


1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.


Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2
题意很麻烦:解释一下数据 7 4 表示给出7个数,有4个询问,下一行给出7个数,在下一行有4个询问,“1”代表从头到第一个元素中最小的值,“2”代表从头到第二个元素中第二小的值,“6”代表从头到第六个元素中第三小的值,“6”代表从头到第六个元素中第四小的值,给出的询问中 a[i] <= a[j] (i < j) ;

做法,定义两个优先队列,以大优先的p1,以小优先的p2,如果要求的是第x小的值,p1中存下(x-1)个小值,那么第x个就是p2的队首,在求第一个小的值,p1为空,求完第一个小的值后,将p2的队首放入p1,再来求第二小的值,读取给出的数(a)时,如果a大于p1的队首,那么a放入p2,否则,将a放入p1,p1的队首放入p2,保证p1的个数均比p2小,且为(x-1)个,读取完数后p2的队首就是第x小的数,输出,再把p2的队首放入p1,执行之前的操作,得到下一个要求的最小值。

用两个优先队列,分开整体的数组,得到第x小值


#include 
  
   
#include 
   
     #include 
    
      #include 
     
       #include 
      
        using namespace std; #define LL __int64 priority_queue 
       
         p1 ; priority_queue 
        
         ,greater
         
           > p2 ; LL a[6000000] ; int main() { int i , j , n , m , x ; LL temp ; while(scanf("%d %d", &n, &m)!=EOF) { while( !p1.empty() ) p1.pop(); while( !p2.empty() ) p2.pop() ; for(i = 1 ; i <= n ; i++) scanf("%I64d", &a[i]); i = 1 ; while(m--) { scanf("%d", &x); for( ; i <= x ; i++) { if( p1.empty() || p1.top() < a[i] ) p2.push(a[i]); else { p1.push(a[i]); temp = p1.top() ; p1.pop() ; p2.push(temp); } } temp = p2.top(); p2.pop() ; printf("%d\n", temp); p1.push(temp); } } return 0; } 
         
        
       
      
     
    
   
  




】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇hdu1350Taxi Cab Scheme (最小路.. 下一篇POJ 1442 Black Box(优先队列)

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: