题目链接:uva 10140 - Prime Distance
题目大意:给出一个范围,问说该范围内,相邻的两个素数最大距离和最小距离。
解题思路:类似素数筛选法,起始位置有L开始,直到超过R,处理出素数之后就好办了。
#include
#include
#include
const int maxn = 1e6; typedef long long ll; int cp, v[maxn+5]; ll limit, prime[maxn+5]; void primeTable (int n) { cp = 0; memset(v, 0, sizeof(v)); for (int i = 2; i <= n; i++) { if (v[i]) continue; prime[cp++] = i; for (int j = 2 * i; j <= n; j += i) v[j] = 1; } } inline ll cal(ll a, ll b) { ll k = b / a; if (b%a) k++; if (k * a <= limit && v[k*a] == 0) k++; return k * a; } int cnt, set[maxn+5], vis[maxn+5]; ll L, R; void solve () { memset(vis, 0, sizeof(vis)); ll m = sqrt(R+0.5); for (int i = 0; i < cp; i++) { if (prime[i] > m) break; for (ll j = cal(prime[i], L); j <= R; j += prime[i]) { vis[j-L] = 1; } } cnt = 0; for (ll i = L; i <= R; i++) { if (i == 1 || i == 0) continue; if (vis[i-L]) continue; set[cnt++] = i-L; } } int main () { limit = 1<<16; primeTable(limit); while (scanf("%lld%lld", &L, &R) == 2) { solve(); if (cnt <= 1) printf("There are no adjacent primes.\n"); else { int minRec, maxRec, minDis, maxDis; maxDis = 0; minDis = 1e7; for (int i = 1; i < cnt; i++) { int tmp = set[i] - set[i-1]; if (tmp > maxDis) { maxDis = tmp; maxRec = i; } if (tmp < minDis) { minDis = tmp; minRec = i; } } printf("%lld,%lld are closest, %lld,%lld are most distant.\n", set[minRec-1]+L, set[minRec]+L, set[maxRec-1]+L, set[maxRec]+L); } } return 0; }