树形选择排序 (tree selection sort) 详解 及 代码
本文地址: http://blog.csdn.net/caroline_wendy
算法逻辑: 根据节点的大小, 建立树, 输出树的根节点, 并把此重置为最大值, 再重构树.
因为树中保留了一些比较的逻辑, 所以减少了比较次数.
也称锦标赛排序, 时间复杂度为O(nlogn), 因为每个值(共n个)需要进行树的深度(logn)次比较.
参考<数据结构>(严蔚敏版) 第278-279页.
树形选择排序(tree selection sort)是堆排序的一个过渡, 并不是核心算法.
但是完全按照书上算法, 实现起来极其麻烦, 几乎没有任何人实现过.
需要记录建树的顺序, 在重构时, 才能减少比较.
本着娱乐和分享的精神, 应人之邀, 简单的实现了一下.
代码:
/*
* TreeSelectionSort.cpp
*
* Created on: 2014.6.11
* Author: Spike
*/
/*eclipse cdt, gcc 4.8.1*/
#include
#include
#include
#include
#include
#include
using namespace std; /*树的结构*/ struct BinaryTreeNode{ bool from; //判断来源, 左true, 右false int m_nValue; BinaryTreeNode* m_pLeft; BinaryTreeNode* m_pRight; }; /*构建叶子节点*/ BinaryTreeNode* buildList (const std::vector
& L) { BinaryTreeNode* btnList = new BinaryTreeNode[L.size()]; for (std::size_t i=0; i
from = true; maxNode->m_nValue = INT_MAX; maxNode->m_pLeft = NULL; maxNode->m_pRight = NULL; /*复制数组*/ BinaryTreeNode* childNodes = new BinaryTreeNode[n+1]; //增加一个节点 for (int i=0; i
m_nValue <= btnList[i].m_pRight->m_nValue; btnList[i].from = less; btnList[i].m_nValue = less ? btnList[i].m_pLeft->m_nValue : btnList[i].m_pRight->m_nValue; } buildTree(btnList, num); } /*返回树根, 重新计算数*/ int rebuildTree (BinaryTreeNode* tree) { int result = tree[0].m_nValue; std::stack
nodes; BinaryTreeNode* node = &tree[0]; nodes.push(node); while (node->m_pLeft != NULL) { node = node->from ? node->m_pLeft : node->m_pRight; nodes.push(node); } node->m_nValue = INT_MAX; nodes.pop(); while (!nodes.empty()) { node = nodes.top(); nodes.pop(); bool less = node->m_pLeft->m_nValue <= node->m_pRight->m_nValue; node->from = less; node->m_nValue = less ? node->m_pLeft->m_nValue : node->m_pRight->m_nValue; } return result; } /*从上到下打印树*/ void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = &tree[0]; std::queue
temp1; std::queue
temp2; temp1.push(node); while (!temp1.empty()) { node = temp1.front(); if (node->m_pLeft != NULL && node->m_pRight != NULL) { temp2.push(node->m_pLeft); temp2.push(node->m_pRight); } temp1.pop(); if (node->m_nValue == INT_MAX) { std::cout << "MAX" << " "; } else { std::cout << node->m_nValue << " "; } if (temp1.empty()) { std::cout << std::endl; temp1 = temp2; std::queue
empty; std::swap(temp2, empty); } } } int main () { std::vector
L = {49, 38, 65, 97, 76, 13, 27, 49}; BinaryTreeNode* tree = buildTree(buildList(L), L.size()); std::cout << "Begin : " << std::endl; printTree(tree); std::cout << std::endl; std::vector
result; for (std::size_t i=0; i
输出:
Begin :
13
38 13
38 65 13 27
49 38 65 97 76 13 27 49
Round[1] :
27
38 27
38 65 76 27
49 38 65 97 76 MAX 27 49
Round[2] :
38
38 49
38 65 76 49
49 38 65 97 76 MAX MAX 49
Round[3] :
49
49 49
49 65 76 49
49 MAX 65 97 76 MAX MAX 49
Round[4] :
49
65 49
MAX 65 76 49
MAX MAX 65 97 76 MAX MAX 49
Round[5] :
65
65 76
MAX 65 76 MAX
MAX MAX 65 97 76 MAX MAX MAX
Round[6] :
76
97 76
MAX 97 76 MAX
MAX MAX MAX 97 76 MAX MAX MAX
Round[7] :
97
97 MAX
MAX 97 MAX MAX
MAX MAX MAX 97 MAX MAX MAX MAX
Round[8] :
MAX
MAX MAX
MAX MAX MAX MAX
MAX MAX MAX MAX MAX MAX MAX MAX
result : 13 27 38 49 49 65 76 97
