设为首页 加入收藏

TOP

UVa 2038 - Strategic game(二分图最小顶点覆盖 or 树形DP)
2015-11-21 01:02:37 来源: 作者: 【 】 浏览:2
Tags:UVa 2038 Strategic game 二分 最小 顶点 覆盖 树形

Strategic game

Description

Download as PDF

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieva l city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

For example for the tree:

\

the solution is one soldier (at the node 1).

Input

The input file contains several data sets in text format. Each data set represents a tree with the following description:
the number of nodes the description of each node in the following format:
node_identifier:(number_of_roads) node_identifier1 node_identifier2 ? node_identifiernumber_of_roads
or
node_identifier:(0)
The node identifiers are integer numbers between 0 and n-1, for n nodes ( 0 < n ≤ 1500). Every edge appears only once in the input data.

Output

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers).

?

Sample Input
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

?

题意:给定一棵树,选择尽量少的点,使得每个没有选中的结点至少和一个已经选中的结点相邻。输出最少需要选择的节点数。

思路:经典的二分图最小顶点覆盖, 也是经典的树形 DP 。

最小顶点覆盖 == 最大匹配(双向图)/2
数据较大,用邻接表。不然会超时。
?
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
using namespace std;

const int MAXN = 1510;
int nx, ny;
int used[MAXN];
int cx[MAXN], cy[MAXN];
vectorg[MAXN];

int Find(int u)
{
    for(int i = 0; i < g[u].size(); i++)
    {
        int v = g[u][i];
        if(!used[v])
        {
            used[v] = 1;
            if(cy[v]==-1 || Find(cy[v]))
            {
                cy[v] = u;
                cx[u] = v;
                return 1;
            }
        }
    }
    return 0;
}

int Hungary()
{
    int res = 0;
    memset(cx, -1, sizeof(cx));
    memset(cy, -1, sizeof(cy));
    for(int i = 0; i < nx; i++)
    {
        if(cx[i] == -1)
        {
            memset(used, 0, sizeof(used));
            if(Find(i))
                res++;
        }
    }
    return res;
}

int main()
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    int t, n, num;
    int x, y;
    while(cin>>n)
    {
        if(!n)
            break;
        ny = nx = n;
        t = n;
        for(int i = 0; i < n; i++)
            g[i].clear();
        while(t--)
        {
            scanf("%d:(%d)", &x, &num);
            while(num--)
            {
                scanf("%d", &y);
                g[x].push_back(y);
                g[y].push_back(x);
            }
        }
        printf("%d\n", Hungary()/2);
    }
    return 0;
}

?

】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇Codeforces Round #167 (Div. 1)B 下一篇fzu2192,种类并查集

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: