设为首页 加入收藏

TOP

ZOJ3868:GCD Expectation
2015-11-21 01:05:01 来源: 作者: 【 】 浏览:3
Tags:ZOJ3868:GCD Expectation

Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, x2,…,xm} (each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1, x2,…,xm)]k.

Note that gcd(x1, x2,…,xm) is the greatest common divisor of {x1, x2,…,xm}.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n, k (1 ≤ n, k ≤ 106). The second line contains n integers a1, a2,…,an (1 ≤ ai ≤ 106).

The sum of values max{ai} for all the test cases does not exceed 2000000.

Output

For each case, if the expectation is E, output a single integer denotes E · (2n - 1) modulo 998244353.

Sample Input

1
5 1
1 2 3 4 5

Sample Output

42
 
 
 
 
对于N个数的序列,所有非空子集中,其期望是GCD的k次方
输出期望乘以(2^N-1)的值
题目中1的概率是26/31,2的概率是2/32,3,4,5的概率是1/32
期望则是42/32,所以答案为42,也就是说我们的目标是求出期望的分子部分即可
 
 
对于N的序列,肯定有2^N-1个非空子集,其中其最大的GCD不会大于原序列的max,那么我们用数组fun来记录其期望
例如题目中的,期望为1的有26个,期望为2的有2个,期望为3,4,5的都只有1个
我们可以拆分来算,首先对于1,期望为1,1的倍数有5个,那么这五个的全部非空子集为2^5-1种,得到S=(2^5-1)*1;
对于2,2的期望应该是2,但是在期望为1的时候所有的子集中,我们重复计算了2的期望,多以我们应该减去重复计算的期望数,现在2的期望应该作1算,那么对于2的倍数,有两个,2,4,其组成的非空子集有2^2-1个,所以得到S+=(2^2-1)*1
对于3,4,5同理;
 
 
 
 
#include 
  
    #include 
   
     #include 
    
      #include 
     
       #include 
      
        #include
       #include 
        
          #include 
         
           #include 
          
            #include 
           
             using namespace std; #define ls 2*i #define rs 2*i+1 #define up(i,x,y) for(i=x;i<=y;i++) #define down(i,x,y) for(i=x;i>=y;i--) #define mem(a,x) memset(a,x,sizeof(a)) #define w(a) while(a) #define LL long long const double pi = acos(-1.0); #define Len 1000005 #define mod 998244353 const LL inf = 1<<30; LL t,n,k; LL a[Len]; LL two[Len],fun[Len],cnt[Len],vis[Len],maxn; LL power(LL x, LL y) { LL ans = 1; w(y) { if(y&1) ans=(ans*x)%mod; x=(x*x)%mod; y/=2; } return ans; } int main() { LL i,j; scanf("%lld",&t); two[0] = 1; up(i,1,Len-1) two[i] = (two[i-1]*2)%mod; w(t--) { mem(cnt,0); mem(vis,0); scanf("%lld%lld",&n,&k); maxn = 0; up(i,0,n-1) { scanf("%lld",&a[i]); if(!vis[a[i]]) { vis[a[i]] = 1; cnt[a[i]] = 1; } else cnt[a[i]]++; maxn = max(maxn,a[i]); } fun[1] = 1; up(i,2,maxn) fun[i] = power(i,k); up(i,1,maxn) { for(j = i+i; j<=maxn; j+=i) fun[j]=(fun[j]-fun[i])%mod; } LL ans = (two[n]-1)*fun[1]%mod; up(i,2,maxn) { LL cc = 0; for(j = i; j<=maxn; j+=i) { if(vis[j]) cc+=cnt[j]; } LL tem = (two[cc]-1)*fun[i]%mod; ans = (ans+tem)%mod; } printf("%lld\n",(ans+mod)%mod); } return 0; } 
           
          
         
        
      
     
    
   
  


】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇ZOJ3861:Valid Pattern Lock(DFS) 下一篇ZOJ3860:Find the Spy

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: