设为首页 加入收藏

TOP

bzoj2007 NOI2010 海拔(对偶图)(一)
2019-02-12 18:08:01 】 浏览:87
Tags:bzoj2007 NOI2010 海拔 对偶

题目链接

80分(最小割)思路

先考虑如果没有题目中东南角为\(1\)那个限制的话会怎样。
那么只要让每个点的海拔都是\(0\)就行了。这样不论怎样走,最后的答案都是0.
然后再考虑那个东南角为\(1\)的限制表达了什么。其实说明了最后的答案一定是右下角一部分海拔全部为\(1\),左上角一部分海拔全部为\(0\)
所以这样只要找到分界点就行了。
这就是最小割的裸题啊。以\((1,1)\)为起点,\((n+1,n+1)\)为终点跑一遍最小割就行了。

100分(对偶图)思路

直接最小割过不去后面的大数据。所以要用对偶图优化一下。
平面图就是像题目中这样两条边的交点都是顶点的图。
如图

图中\(9\)个方格叫做平面图的面。对于一个平面图的对偶图,就是将平面图中的每个边两边的两个面连接起来。
上图的对偶图就长这样

红色部分就是对偶图了。
然后只要将原图转化成对偶图之后,跑最短路就行了。

80(90)分代码

/*
* @Author: wxyww
* @Date:   2019-02-12 11:28:33
* @Last Modified time: 2019-02-12 15:42:39
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
#define num(x,y) (x - 1) * (n + 1) + y
const int N = 500000,M = 10000000,INF = 1e9;
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0'
		    

; c=getchar(); } return x*f; } struct node { int v,nxt,w; }e[M]; int head[N],ejs = 1; void add(int u,int v,int w) { e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w; e[++ejs].v = u;e[ejs].nxt = head[v];head[v] = ejs;e[ejs].w = 0; } queue<int>q; int dep[N]; int S,T; int bfs() { memset(dep,0,sizeof(dep)); while(!q.empty()) q.pop(); dep[S] = 1;q.push(S); while(!q.empty()) { int u = q.front();q.pop(); for(int i = head[u];i;i = e[i].nxt) { int v = e[i].v; if(!dep[v] && e[i].w) { q.push(v); dep[v] = dep[u] + 1; if(v == T) return 1; } } } return 0; } int cur[N]; int dfs(int u,int now) { if(u == T) return now; int ret = 0; for(int &i = cur[u];i;i = e[i].nxt) { int v = e[i].v; if(dep[v] == dep[u] + 1 && e[i].w) { int k = dfs(v,min(now - ret,e[i].w)); e[i].w -= k; e[i ^ 1].w += k; ret += k; if(now == ret) return ret; } } return ret; } int dinic() { int ans = 0; while(bfs()) { memcpy(cur,head,sizeof(cur)); ans += dfs(S,INF); } return ans; } int main() { int n = read(); S = num(1,1);T = num(n + 1,n + 1); for(int i = 1;i <= n + 1;++i) { for(int j = 1;j <= n;++j) { int w = read(); add(num(i,j),num(i,j + 1),w); } } for(int i = 1;i <= n;++i) { for(int j = 1;j <= n + 1;++j) { int w = read(); add(num(i,j),num(i + 1,j),w); } } for(int i = 1;i <= n + 1; ++i) { for(int j = 1;j <= n;++j) { int w = read(); add(num(i,j + 1),num(i,j),w); } } for(int i = 1;i <= n;++i) { for(int j = 1;j <= n + 1; ++j) { int w = read(); add(num(i + 1,j),num(i,j),w); } } cout<<dinic(); return 0; }

100分代码

/*
* @Author: wxyww
* @Date:   2019-02-12 14:54:58
* @Last Modified time: 2019-02-12 15:31:30
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 501000,M = 10000000;
#define pi pair<int,int>
ll read() {
    ll x=0,f=1;char c=getchar();
    while(c<'0'||c>'9') {
        if(c=='-') f=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9') {
        x=x*10+c-'0';
        c=getchar();
    }
    return x*f;
}
priority_queue<pi,vector<pi>,greater<pi> >q;
struct node {
    int v,nxt,w;
}e[M];
int head[N],ejs;
void add(int u,int v,int w) {
    e[++ejs].v = v;e[ejs].w = w;e[ejs].nxt = head[u];head[u] = ejs;
}
int S,T
			
		  
编程开发网
首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇L1-030 一帮一 下一篇L1-027 出租

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

array(4) { ["type"]=> int(8) ["message"]=> string(24) "Undefined variable: jobs" ["file"]=> string(32) "/mnt/wp/cppentry/do/bencandy.php" ["line"]=> int(217) }