Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
int []f;
public int minimumTotal(List
> triangle) {
int size = triangle.size();
f = new int[(size+1)*(size)/2];
f[0] = triangle.get(0).get(0);
for(int i=1;i
深搜(超时)
public class Solution {
int minRes = Integer.MAX_VALUE;
public int minimumTotal(List
> triangle) {
minimumTotal(triangle,0,0,0);
return minRes;
}
private void minimumTotal(List
> triangle,int sum,int size,int column){ if(size==triangle.size()){ minRes = Math.min(sum, minRes); return; } sum += triangle.get(size).get(column); minimumTotal(triangle,sum,size+1,column); minimumTotal(triangle,sum,size+1,column+1); } }