Given integers N and M, output in how many ways you can take N distinct positive integers such that sum of those integers is <= M. Since result can be huge, output it modulo 1000000007 (10^9 + 7)
N <= 20
M <= 100000
Input
First line of input is number t, number of test cases. Each test case consists only of 2 numbers N and M, in that order.
Output
Output number aksed in description.
题意:找n个不同的数且和不超过m, 求有多少种方案?
DP
n个数为ai,bi = an-i+1 - an-i, bn = a1.
sum(a[i]) = sum(b[i]*i)
即把问题
n个不同的数且和不超过m
转化为
b[i]>0 且 sum(b[i]*i)<=m
然后设dp[i][j]表示b数组前i项的和为j的方案数。
则:dp[i][j] = dp[i][j-i] + dp[i-1][j-i];
answer = sum(dp[n][j]);(1<=j<=m)

<??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcD4KPHByZSBjbGFzcz0="brush:java;">#include