?
?
Discrete Logging| Time Limit: 5000MS | ? | Memory Limit: 65536K |
| Total Submissions: 4011 | ? | Accepted: 1849 |
?
Description
Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".Sample Input
5 2 1 5 2 2 5 2 3 5 2 4 5 3 1 5 3 2 5 3 3 5 3 4 5 4 1 5 4 2 5 4 3 5 4 4 12345701 2 1111111 1111111121 65537 1111111111
Sample Output
0 1 3 2 0 3 1 2 0 no solution no solution 1 9584351 462803587
Hint
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
Source
Waterloo Local 2002.01.26?
?
?
/* *********************************************** Author :CKboss Created Time :2015年03月31日 星期二 19时39分34秒 File Name :POJ2417.cpp ************************************************ */ #include#include #include #include #include #include #include #include #include #include #include
?
?
?