?
对每个点向与之相邻并h小于该点的点加有向边。然后强连通缩点。问题就转化成了最少加几条边使得图为强连通图,取入度为0和出度为0的点数的较大者即可。注意,当强连通分量只有一个的时候,答案是0,而不是1.
代码如下:
#include #include #include #include #include #include #include #include #include using namespace std; #define LL long long #define pi acos(-1.0) const int mod=1e9+7; const int INF=0x3f3f3f3f; const double eqs=1e-9; const int MAXN=250000+10; int head[MAXN], Ecnt, top, indx, scc; int low[MAXN], dfn[MAXN], belong[MAXN], instack[MAXN], stk[MAXN], out[MAXN], in[MAXN]; int mp[600][600]; int jx[]={0,0,1,-1}; int jy[]={1,-1,0,0}; struct node { int u, v, next; }edge[1000000]; void add(int u, int v) { edge[Ecnt].v=v; edge[Ecnt].next=head[u]; head[u]=Ecnt++; } void tarjan(int u) { low[u]=dfn[u]=++indx; instack[u]=1; stk[++top]=u; for(int i=head[u];i!=-1;i=edge[i].next){ int v=edge[i].v; if(!dfn[v]){ tarjan(v); low[u]=min(low[u],low[v]); } else if(instack[v]){ low[u]=min(low[u],dfn[v]); } } if(low[u]==dfn[u]){ scc++; while(1){ int v=stk[top--]; belong[v]=scc; instack[v]=0; if(u==v) break; } } } void init() { memset(head,-1,sizeof(head)); memset(dfn,0,sizeof(dfn)); memset(instack,0,sizeof(instack)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); Ecnt=top=indx=scc=0; } int main() { int n, m, i, j, k, a, b, cntin, cntout; init(); scanf(%d%d,&n,&m); for(i=0;i =0&&a =0&&b ?