Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.<??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcD4KPHA+R2l2ZW4gYW4gaW50ZWdlciA8ZW0+bjwvZW0+LCB5b3VyIGdvYWwgaXMgdG8gY29tcHV0ZSB0aGUgbGFzdCA0IGRpZ2l0cyBvZiA8ZW0+RjxzdWI+bjwvc3ViPjwvZW0+LjwvcD4KCgoKCjxwIGNsYXNzPQ=="pst"> Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
题意:题意:求第n个Fibonacci数mod(m)的结果,当n=-1时,break。其中n(where 0 ≤ n ≤ 1,000,000,000) ,m=10000;
思路:常规方法肯定超时,这道题学会了用矩阵快速幂求斐波那契。如下图:

A = F(n - 1), B = F(N - 2),这样使构造矩阵
的n次幂乘以初始矩阵
得到的结果就是
。
#include#include #include #include #include #include #include #include