题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,
建造水管距离为坐标之间的欧几里德距离(好象是叫欧几里德距离吧),费用为海拔之差
现在要求方案使得费用与距离的比值最小
很显然,这个题目是要求一棵最优比率生成树,
0-1分数规划,0-1分数规划是分数规划的一种特殊情况,分数规划适用于求解最优化问题的,对于求最大的对应解,该理论也有效
这是从网上找到的具体的最优比率生成树的方法的讲解
////////////////////
概念
有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).
这显然是一个具有现实意义的问题.
解法之一 0-1分数规划
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i
为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.
然后明确两个性质:
1. z单调递减
证明: 因为cost为正数, 所以z随l的减小而增大.
2. z( max(r) ) = 0
证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;
若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.
到了这个地步, 七窍全已打通, 喜欢二分的上二分, 喜欢Dinkelbach的就Dinkelbach.
复杂度
时间 O( O(MST) * log max(r) )
空间 O( O(MST) )
/////////////////////////////
关于分数规划的学习我找到了一篇论文,里面有讲分数规划,特别详细
算法合集之《最小割模型在信息学竞赛中的应用》
黑书上说求最小生成树有O(n)的方法,没去找
迭代+prim
#include
#include
#include
#include
#include
#include
#include
|