题目地址:HDU 2256
思路:
(sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n;
这时要注意到(5+2*sqrt(6))^n总可以表示成an+bn*sqrt(6);
an+bn*(sqrt(6))=(5+2*sqrt(6))*(a(n-1)+b(n-1)*sqrt(6))
=(5*a(n-1)+12*b(n-1))+(2*a(n-1)+5*b(n-1))*sqrt(6);
显然,an=5*a(n-1)+12*b(n-1);bn=2*a(n-1)+5*b(n-1);
此时可以很容易的构造出一个矩阵来快速求an和bn:
5,12
2,5
那么下一步应该怎么办呢?对于我等菜渣来说最好的办法当然是。。打表。。找规律。。
然后规律就是ans=2*an-1;
那么怎么证明呢?证明如下:
(5+2*sqrt(6))^n=an+bn*sqrt(6); (5-2*sqrt(6))^n=an-bn*sqrt(6);
(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=2*an;
然后,由于
(5-2*sqrt(6))^n=(0.101....)^n<1;
再由于
(5+2*sqrt(6))^n=2*an-(5-2*sqrt(6))^n
可得
2*an-1<(5+2*sqrt(6))^n<2*an;
所以对(5+2*sqrt(6))^n向下取整的结果一定是2*an-1;
证明完毕。
所以说只要用矩阵快速幂求出an即可。
代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include