设为首页 加入收藏

TOP

hdu 5015 233 Matrix(西安网络赛 1009)
2015-07-20 17:39:50 来源: 作者: 【 】 浏览:3
Tags:hdu 5015 233 Matrix 西安 网络 1009

233 Matrix

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 670 Accepted Submission(s): 401


Problem Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got a i,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?
Input There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).
Output For each case, output a n,m mod 10000007.
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16

Sample Output
234
2799
72937

Hint

  
\


构造矩阵b:

b[0]=233

b[1]=a[1]<??http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz5iWzJdPWFbMl08L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+YlszXT1hWzNdPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPi4uLi4uLjwvc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz5iW24mIzQzOzFdPTM8L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+wP3I5yDR+cD9Mzwvc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz5iWzBdPTIzMzwvc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz5iWzFdPTIzPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPmJbMl09NDc8L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+YlszXT0xNjwvc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz5iWzRdPTM8L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+td3Nxr7Y1fNBo6zR+cD9Mzwvc3Ryb25nPjwvcD4KPHA+PHN0cm9uZz4xMCAwIDAgMCAxPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPjEgICAxIDAgMCAwPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPjEgICAxIDEgMCAwPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPjEgICAxIDEgMSAwPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPjAgICAwIDAgMCAxPC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPm4mIzQzOzK917e91fM8L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+QV5tKmK1xLXabs/uvs3Kx73hufs8L3N0cm9uZz48L3A+CjxwPjxzdHJvbmc+tPrC66O6PC9zdHJvbmc+PC9wPgo8cD48c3Ryb25nPjwvc3Ryb25nPjxwcmUgY2xhc3M9"brush:java;">//1046ms #include #include #include #include using namespace std; const int mod=10000007; struct matrix { long long ma[13][13]; }a; int n,m; long long b[13]; matrix multi(matrix x,matrix y)//矩阵相乘 { matrix ans; memset(ans.ma,0,sizeof(ans.ma)); for(int i=0;i<=n+1;i++) { for(int j=0;j<=n+1;j++) { for(int k=0;k<=n+1;k++) { ans.ma[i][j]=(ans.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod; } } } return ans; } int main() { while(~scanf("%d%d",&n,&m)) { memset(a.ma,0,sizeof(a.ma)); b[0]=233; for(int i=1;i<=n;i++) { scanf("%I64d",&b[i]); } b[n+1]=3; a.ma[0][0]=10;//构造a矩阵 a.ma[0][n+1]=1; a.ma[n+1][n+1]=1; for(int i=1;i<=n;i++) { for(int j=0;j<=i;j++) { a.ma[i][j]=1; } } matrix ans; memset(ans.ma,0,sizeof(ans.ma)); for(int i=0;i<=n+1;i++)//单位矩阵 { for(int j=0;j<=n+1;j++) { if(i==j) ans.ma[i][j]=1; } } while(m)//矩阵快速幂 { if(m&1) { ans=multi(ans,a); } a=multi(a,a); m=(m>>1); } matrix mp; memset(mp.ma,0,sizeof(mp.ma)); for(int i=0;i<=n+1;i++)//a的m次方与b矩阵相乘 { for(int k=0;k<=n+1;k++) { mp.ma[i][0]=(mp.ma[i][0]+ans.ma[i][k]*b[k])%mod; } } printf("%I64d\n",mp.ma[n][0]); } return 0; }



】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇POJ 2420 A Star not a Tree? 费.. 下一篇hdu 1757 A Simple Math Problem..

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·Redis 分布式锁全解 (2025-12-25 17:19:51)
·SpringBoot 整合 Red (2025-12-25 17:19:48)
·MongoDB 索引 - 菜鸟 (2025-12-25 17:19:45)
·What Is Linux (2025-12-25 16:57:17)
·Linux小白必备:超全 (2025-12-25 16:57:14)