设为首页 加入收藏

TOP

HDOJ 5001 Walk
2015-07-20 17:39:59 来源: 作者: 【 】 浏览:3
Tags:HDOJ 5001 Walk


姒??DP

dp[j][d] 琛ㄧず涓??杩??硅蛋d姝ュ?j????? dp[j][d]=sigma ( dp[k][d-1] * Probability )

ans = sigma ( dp[j][D] )

Walk

Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 401 Accepted Submission(s): 261
Special Judge


Problem Description I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.

If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
Input The first line contains an integer T, denoting the number of the test cases.

For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b.

T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
Output For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9

Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037

Source 2014 ACM/ICPC Asia Regional Anshan Online


#include 
  
   
#include 
   
     #include 
    
      #include 
     
       #include 
      
        using namespace std; const int maxn=10010; int n,m,D; vector
       
         g[maxn]; double dp[55][maxn]; int main() { int T_T; scanf("%d",&T_T); while(T_T--) { scanf("%d%d%d",&n,&m,&D); for(int i=0;i<=n+1;i++) g[i].clear(); while(m--) { int a,b; scanf("%d%d",&a,&b); g[a].push_back(b); g[b].push_back(a); } for(int i=1;i<=n;i++) { memset(dp,0,sizeof(dp)); for(int j=1;j<=n;j++) { if(i!=j) dp[j][0]=1.0/n; } for(int d=1;d<=D;d++) { for(int j=1;j<=n;j++) { if(j==i) continue; for(int k=0,sz=g[j].size();k
        
         


】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇C++运算符重载的妙用 下一篇HDU 3639 Hawk-and-Chicken

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

·Redis 分布式锁全解 (2025-12-25 17:19:51)
·SpringBoot 整合 Red (2025-12-25 17:19:48)
·MongoDB 索引 - 菜鸟 (2025-12-25 17:19:45)
·What Is Linux (2025-12-25 16:57:17)
·Linux小白必备:超全 (2025-12-25 16:57:14)