题目链接:uva 10829 - L-Gap Substrings
题目大意:给定一个字符串,问有多少字符串满足UVU的形式,要求U非空,V的长度为g。
解题思路;对字符串的正序和逆序构建后缀数组,然后枚举U的长度l,每次以长度l分区间,在l和l+d+g所在的两个区间上确定U的最大长度。
#include
#include
#include
#include
using namespace std; typedef long long ll; const int maxn = 100005; struct Suffix_Arr { int n, len, s[maxn]; int SA[maxn], rank[maxn], height[maxn]; int tmp_one[maxn], tmp_two[maxn], c[30]; int d[maxn][20]; void init(char* str); void build_arr(int m); void get_height(); void rmq_init(); int rmq_query(int l, int r); ll solve(int m); void put(); }AC; char str[maxn]; int main () { int cas, n; scanf("%d", &cas); for (int i = 1; i <= cas; i++) { scanf("%d%s", &n, str); AC.init(str); printf("Case %d: %lld\n", i, AC.solve(n)); } return 0; } void Suffix_Arr::put () { for (int i = 0; i < n; i++) printf("%d ", SA[i]); printf("\n"); for (int i = 0; i < n; i++) printf("%d ", height[i]); printf("\n"); } ll Suffix_Arr::solve(int m) { build_arr(28); get_height(); rmq_init(); ll ret = 0; for (int l = 1; l < len / 2; l++) { for (int i = 0; i < len; i += l) { int j = i + l + m, sum = 0; if (j < len) sum += min(rmq_query(rank[i], rank[j]), l); if (i) sum += min(rmq_query(rank[n-i-1], rank[n-j-1]), l-1); ret += max(0, sum - l + 1); } } return ret; } int Suffix_Arr::rmq_query(int l, int r) { if (l > r) swap(l, r); l++; int k = 0; while ((1<<(k+1)) <= r - l + 1) k++; return min(d[l][k], d[r - (1<
= 0; i--) s[n++] = str[i] - 'a' + 1; s[n++] = 0; } void Suffix_Arr::get_height() { for (int i = 0; i < n; i++) rank[SA[i]] = i; int mv = height[0] = 0; for (int i = 0; i < n - 1; i++) { if (mv) mv--; int j = SA[rank[i] - 1]; while (s[i+mv] == s[j+mv]) mv++; height[rank[i]] = mv; } } void Suffix_Arr::build_arr(int m) { int *x = tmp_one, *y = tmp_two; for (int i = 0; i < m; i++) c[i] = 0; for (int i = 0; i < n; i++) c[x[i] = s[i]]++; for (int i = 1; i < m; i++) c[i] += c[i-1]; for (int i = n-1; i >= 0; i--) SA[--c[x[i]]] = i; for (int k = 1; k <= n; k <<= 1) { int mv = 0; for (int i = n - k; i < n; i++) y[mv++] = i; for (int i = 0; i < n; i++) if (SA[i] >= k) y[mv++] = SA[i] - k; for (int i = 0; i < m; i++) c[i] = 0; for (int i = 0; i < n; i++) c[x[y[i]]]++; for (int i = 1; i < m; i++) c[i] += c[i-1]; for (int i = n-1; i >= 0; i--) SA[--c[x[y[i]]]] = y[i]; swap(x, y); mv = 1; x[SA[0]] = 0; for (int i = 1; i < n; i++) x[SA[i]] = (y[SA[i-1]] == y[SA[i]] && y[SA[i-1] + k] == y[SA[i] + k] ? mv - 1 : mv++); if (mv >= n) break; m = mv; } }