设为首页 加入收藏

TOP

【OpenCV】透视变换 Perspective Transformation(续)(一)
2015-02-02 14:36:42 来源: 作者: 【 】 浏览:10
Tags:OpenCV 透视 变换 Perspective Transformation

求解变换公式的函数:


Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[])


输入原始图像和变换之后的图像的对应4个点,便可以得到变换矩阵。之后用求解得到的矩阵输入perspectiveTransform便可以对一组点进行变换:


void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)


注意这里src和dst的输入并不是图像,而是图像对应的坐标。应用前一篇的例子,做个相反的变换:


int main( )
{
?Mat img=imread("boy.png");
?int img_height = img.rows;
?int img_width = img.cols;
?vector corners(4);
?corners[0] = Point2f(0,0);
?corners[1] = Point2f(img_width-1,0);
?corners[2] = Point2f(0,img_height-1);
?corners[3] = Point2f(img_width-1,img_height-1);
?vector corners_trans(4);
?corners_trans[0] = Point2f(150,250);
?corners_trans[1] = Point2f(771,0);
?corners_trans[2] = Point2f(0,img_height-1);
?corners_trans[3] = Point2f(650,img_height-1);


?Mat transform = getPerspectiveTransform(corners,corners_trans);
?cout<?vector ponits, points_trans;
?for(int i=0;i? for(int j=0;j? ?ponits.push_back(Point2f(j,i));
? }
?}


?perspectiveTransform( ponits, points_trans, transform);
?Mat img_trans = Mat::zeros(img_height,img_width,CV_8UC3);
?int count = 0;
?for(int i=0;i? uchar* p = img.ptr(i);
? for(int j=0;j? ?int y = points_trans[count].y;
? ?int x = points_trans[count].x;
? ?uchar* t = img_trans.ptr(y);
? ?t[x*3]? = p[j*3];
? ?t[x*3+1]? = p[j*3+1];
? ?t[x*3+2]? = p[j*3+2];
? ?count++;
? }
?}
?imwrite("boy_trans.png",img_trans);


?return 0;
}


得到变换之后的图片:


?



除了getPerspectiveTransform()函数,OpenCV还提供了findHomography()的函数,不是用点来找,而是直接用透视平面来找变换公式。这个函数在特征匹配的经典例子中有用到,也非常直观:


int main( int argc, char** argv )
{
?Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
?Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );
?if( !img_object.data || !img_scene.data )
?{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }


?//-- Step 1: Detect the keypoints using SURF Detector
?int minHessian = 400;
?SurfFeatureDetector detector( minHessian );
?std::vector keypoints_object, keypoints_scene;
?detector.detect( img_object, keypoints_object );
?detector.detect( img_scene, keypoints_scene );


?//-- Step 2: Calculate descriptors (feature vectors)
?SurfDescriptorExtractor extractor;
?Mat descriptors_object, descriptors_scene;
?extractor.compute( img_object, keypoints_object, descriptors_object );
?extractor.compute( img_scene, keypoints_scene, descriptors_scene );


?//-- Step 3: Matching descriptor vectors using FLANN matcher
?FlannBasedMatcher matcher;
?std::vector< DMatch > matches;
?matcher.match( descriptors_object, descriptors_scene, matches );
?double max_dist = 0; double min_dist = 100;


?//-- Quick calculation of max and min distances between keypoints
?for( int i = 0; i < descriptors_object.rows; i++ )
?{ double dist = matches[i].distance;
?if( dist < min_dist ) min_dist = dist;
?if( dist > max_dist ) max_dist = dist;
?}


?printf("-- Max dist : %f \n", max_dist );
?printf("-- Min dist : %f \n", min_dist );


?//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
?std::vector< DMatch > good_matches;


?for( int i = 0; i < descriptors_object.rows; i++ )
?{ if( matches[i].distance < 3*min_dist )
?{ good_matches.push_back( matches[i]); }
?}


?Mat img_matches;
?drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
? good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
? vector(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );


?//-- Localize the object from img_1 in img_2
?std::vector obj;
?std::vector scene;


?for( size_t i = 0; i < good_matches.size(); i++ )
?{
? //-- Get the keypoints from the good matches
? obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
? scene.push_back( keypoints_scene[ good_matches

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到: 
上一篇【图像处理】透视变换 Perspectiv.. 下一篇OpenCV 闭合轮廓检测

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容: