设为首页 加入收藏

TOP

【多线程与高并发】- 浅谈volatile(一)
2023-07-25 21:41:53 】 浏览:42
Tags:程与高 浅谈 volatile

浅谈volatile

image

简介

volatile是Java语言中的一种轻量级的同步机制,它可以确保共享变量的内存可见性,也就是当一个线程修改了共享变量的值时,其他线程能够立即知道这个修改。跟synchronized一样都是同步机制,但是相比之下,synchronized属于重量级锁,volatile属于轻量级锁。

JMM概述

JMM就是Java内存模型(Java Memory Model),是Java虚拟机规范的一种内存模型,屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的并发效果。

Java内存模型规定了Java程序的变量(包括实例变量,静态变量,但是不包括局部变量和方法参数)全部存储在主内存中,定义了各种变量(线程的共享变量)的访问规则,以及在JVM中将变量存储到主内存与从主内存读取变量的底层细节。

JMM的规定

  • 所有共享变量都存在于主内存(包括实例变量,静态变量,但是不包括局部变量和方法参数),因为局部变量是线程私有,不存在竞争问题。
  • 每个线程都有自己的工作内存,所需要的变量是主内存中的副本。
  • 线程对变量的读、写操作都只能在工作内存中完成,不能直接参与读写主内存的变量。
  • 不同的线程也不能去直接访问不同线程的工作内存的变量,线程间的变量传递需要通过主内存来中转完成。

volatile的特性

1、可见性

volatile可以保证线程的可见性,即当多个线程访问同一个变量的时候,此变量发生改变,其他线程也能实时获得到这个修改的值。

java中,变量都会被放在推内存(所有线程共享的内存)中,多个线程对共享内存是不可见的,当每个线程去获取这个变量的值时,实际上是copy一份副本在线程自身的工作内存中。

举个例子

我们将main作为主线程,MyThread为子线程。在子线程中定义一个共享变量flag,主线程会去访问这个共享变量。在不加volatile的时候,flag在主线程读到的永远是为false,因为两个线程是不可见的。

public class T2_Volatile01 {
    public static void main(String[] args) { // 主线程
        MyThread my = new MyThread();
        my.start();
        while (true) {
            if (my.isFlag()) System.out.println("进入等待...");
        }
    }
}

class MyThread extends Thread { // 子线程
    private volatile boolean flag = false;
    @Override
    public void run() {
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }
        flag = true;
        System.out.println("flag 修改完毕!");
    }

    public boolean isFlag() {
        return flag;
    }

    public void setFlag(boolean flag) {
        this.flag = flag;
    }
}

实际上是已经修改了的,只是线程读的都是自己的工作内存中的数据,然而,要解决这个问题,可以使用synchronized加锁和volatile修饰共享变量来解决,这两种都能让主线程拿到子线程修改的变量的值。

synchronized (my) {
    if (my.isFlag()) System.out.println("进入等待...");
}

加了synchronized锁,首先该线程会获得锁对象,接着会去清空工作内存,再从主内存中copy一份最新的值到工作变量中,接着执行代码, 打印输出,最后释放锁。

当然还能使用volatile关键字去修饰共享变量。一开始子线程从主内存中获取变量的副本到自己的工作内存,进行改值,此时还未写回主内存,主线程从主内存获取的变量的值也是一开始的初始值,等到子线程写回到主内存时,接下来其他线程的工作内存中此变量的副本将会失效,也就是类似于监听。在需要对此变量进行操作的时候,将会到主内存获取新的值保存到线程自身的工作内存中,从而确保了数据的一致。

总结

volatile能够保证不同线程对共享变量的可见性,也就是修改过的volatile修饰的共享变量只要被写回到主内存中,其他线程就能够马上看到最新的数据。

当一个线程对volatile修饰的变量进行写的操作时候,JMM会立即把该线程自身的工作内存的共享变量刷新到主内存中。

当对线程进行读操作的时候,JMM会立即把当前线程自身的工作内存设置无效,从而从主内存中去获取共享变量的数据。

2、无法保证原子性

原子性指的是一项操作要么都执行,要么都不执行,中途不允许中断也不受其他线程干扰。

举个例子

我们看以下案例代码,简单描述一下,AutoAccretion是一个线程类,里面定义了一个共享变量count,并去执行1万次的自增,在main线程中调用多线程去执行自增。我们所期望的结果是最终count的值是1000000,因为每个线程自增1万次,一共100个线程。

public class T3_Volatile01 {
    public static void main(String[] args) {
        Runnable thread = new AutoAccretion();
        for (int i = 1; i <= 100; i++) {
            new Thread(thread, "线程" + i).start();
        }
    }
}

class AutoAccretion implements Runnable {
    private int count = 0;
    @Override
    public void run() {
        for (int i = 1; i <= 10000; i++) {
            count++;
            System.out.println(Thread.currentThread().getName() + "count ==> " + count);
        }
    }
}

分析

count++操作首先会从主内存中拷贝变量副本到工作内存中,在工作内存中进行自增操作,最后将工作内存的数据写回主内存中。运行之后会发现,count的值是没办法到达1百万的。主要原因是count++自增操作并不是原子性的,也就是说在进行count++的时候可能被其他线程打断。

当线程1拿到count=0,进行自增后count=1,但是还没写到主内存,线程2获取的数据可能也是count=0,经过自增count=1,两者在写回

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇《分布式技术原理与算法解析》学.. 下一篇别催了,别催了,这篇文章我一次..

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目