设为首页 加入收藏

TOP

python 面试题第一弹(一)
2023-08-26 21:10:40 】 浏览:76
Tags:python

1. 如何理解Python中的深浅拷贝

浅拷贝(Shallow Copy)创建一个新的对象,该对象的内容是原始对象的引用。这意味着新对象与原始对象共享相同的内存地址,因此对于可变对象来说,如果修改了其中一个对象,另一个对象也会受到影响。浅拷贝通常使用copy模块的copy()函数或者对象的copy()方法来完成。

下面是一个浅拷贝的示例:

import copy

original_list = [1, 2, [3, 4]]
copied_list = copy.copy(original_list)

print(original_list)  # [1, 2, [3, 4]]
print(copied_list)  # [1, 2, [3, 4]]

# 修改原始列表中的元素
original_list[0] = 10
original_list[2][0] = 30

print(original_list)  # [10, 2, [30, 4]]
print(copied_list)  # [1, 2, [30, 4]]

在上面的示例中,copy.copy()函数创建了original_list的浅拷贝copied_list。当我们修改original_list时,copied_list中的嵌套列表也会受到影响。

 

深拷贝(Deep Copy)创建一个新的对象,该对象的内容是原始对象及其所有嵌套对象的副本。这意味着新对象在内存中是完全独立的,对其中一个对象的修改不会影响另一个对象。深拷贝通常使用copy模块的deepcopy()函数或者对象的deepcopy()方法来完成。

下面是一个深拷贝的示例:

import copy

original_list = [1, 2, [3, 4]]
deep_copied_list = copy.deepcopy(original_list)

print(original_list)  # [1, 2, [3, 4]]
print(deep_copied_list)  # [1, 2, [3, 4]]

# 修改原始列表中的元素
original_list[0] = 10
original_list[2][0] = 30

print(original_list)  # [10, 2, [30, 4]]
print(deep_copied_list)  # [1, 2, [3, 4]]

在上面的示例中,copy.deepcopy()函数创建了original_list的深拷贝deep_copied_list。即使我们修改original_listdeep_copied_list中的嵌套列表也不会受到影响。

需要注意的是,深拷贝可能会比浅拷贝更耗费时间和内存,因为它需要递归地复制所有嵌套对象。因此,在处理大型对象或嵌套层级很深的对象时,需要谨慎使用深拷贝。

总结起来,浅拷贝创建一个新对象,该对象与原始对象共享部分内存,而深拷贝创建一个完全独立的新对象,它复制了原始对象及其所有嵌套对象的内容。根据需求选择适当的拷贝方式可以帮助我们正确地处理对象并避免意外的副作用。

2.  谈谈 is 和 == 的区别:

在Python中,is==是用于比较对象的运算符,它们具有不同的功能和用途。

is运算符用于比较两个对象的身份标识,即它们是否指向同一个内存地址。如果两个对象具有相同的身份标识,即它们是同一个对象,那么is运算符返回True;否则,返回False

==运算符用于比较两个对象的值是否相等。它会比较两个对象的内容,而不关心它们是否指向同一个内存地址。如果两个对象的值相等,==运算符返回True;否则,返回False

下面是一个示例,展示了is==运算符的区别:

list1 = [1, 2, 3]
list2 = [1, 2, 3]
list3 = list1

print(list1 is list2)  # False,list1和list2不是同一个对象
print(list1 is list3)  # True,list1和list3是同一个对象

print(list1 == list2)  # True,list1和list2的值相等

在上面的示例中,list1list2虽然具有相同的值,但它们是不同的对象,因此list1 is list2返回False。另一方面,list1list3指向同一个对象,因此list1 is list3返回True。而list1 == list2返回True,因为它们的值相等。

需要注意的是,对于简单的值类型(如整数、字符串等),is==的结果通常是一致的。但对于可变对象(如列表、字典等),is==的结果可能不同,因为可变对象的身份标识可能相同,但值不同。

总结起来,is运算符用于比较两个对象的身份标识,即它们是否指向同一个内存地址;而==运算符用于比较两个对象的值是否相等。在编写代码时,需要根据具体的需求选择适当的运算符。如果要比较对象的值,应使用==运算符;如果要比较对象的身份标识,应使用is运算符。

3. 说说闭包和装饰器的概念:

**闭包(Closure)**是指在一个函数内部定义的函数,并且内部函数可以访问外部函数的变量。闭包可以捕获和保持外部函数的状态,即使外部函数已经执行完毕,内部函数仍然可以使用那些被捕获的变量。闭包在需要保持某些状态或者提供数据隐藏时非常有用。

下面是一个闭包的例子:

def outer_function(x):
    def inner_function(y):
        return x + y
    return inner_function

closure = outer_function(10)
result = closure(5)
print(result)  # 输出 15

在上面的例子中,outer_function是外部函数,它接受一个参数x并返回一个内部函数inner_function。内部函数inner_function可以访问外部函数outer_function的参数x,即使在outer_function执行完毕后仍然有效。

**装饰器(Decorator)**是一种特殊的闭包,用于修改或增强函数的功能而不修改函数本身的定义。装饰器通常用于添加额外的代码,例如日志记录、性能分析、输入验证等。装饰器可以在不修改原函数代码的情况下,对函数进行包装和扩展。

下面是一个简单的装饰器的例子:

def logger(func):
    def wrapper(*args, **kwargs):
        print(f"Calling function: {func.__name__}")
        result = func(*args, **kwargs)
        print(f"Function {func.__name__} executed.")
        return result
    return wrapper

@logger
def add(a, b):
    return a + b

result = add(2, 3)
print(result)  # 输出 5

在上面的例子中,logger是一个装饰器函数,它接受一个函数作为参数,并返回一个新的函数wrapperwrapper函数在调用被装饰的函数之前和之后打印日志信息。

通过使用@logger语法,我们将装饰器应用到add函数上。当调用add函数时,实

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇【pandas小技巧】--统计值作为新列 下一篇Python程序员Visual Studio Code..

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目