TOP

学习笔记TF042:TF.Learn、分布式Estimator、深度学习Estimator(一)
2017-10-09 13:25:44 】 浏览:9105
Tags:学习 笔记 TF042:TF.Learn 分布式 Estimator 深度

TF.Learn,TensorFlow重要模块,各种类型深度学习及流行机器学习算法。TensorFlow官方Scikit Flow项目迁移,谷歌员工Illia Polosukhin、唐源发起。Scikit-learn代码风格,帮助数据科学从业者更好、更快适应接受TensorFlow代码。囊括许多TensorFlow代码、设计模式,用户更快搭建机器学习模型实现应用。避免大量代码重复,把精力放在搭建更精确模型。与其他contrib模块无逢结合。

分布式Estimator。Estimator,各种各样机器学习、深度学习类。可以直接用这些高阶类,也可以根据实际应用需求快速创建子类。graph_actions模块,Estimator在训练、评估模型复杂分布式逻辑被实现、浓缩,不需要复杂Supervisor、Coordinator分布式训练具体实现细节、逻辑。

Estimator接受自定义模型,函数答名(入参字段->返回字段):(1)(features,targets)->(predictions,loss,train_op)。(2)(features,targets,mode)->(predictions,loss,train_op)。(3)(features,targets,mode,params)->(predictions,loss,train_op)。

自定义模型接受两个参数:features和targets。features,数据特征。targets数据特征每行目标或分类标识。tf.one_hot对targets独热编码(One-hot Encoding)。layers.stack叠加多层layers.fully_connected完全连接深度神经网络,每层分别10?20?10个隐藏节点,不同层转换、训练,得到新数据特征。models.logistic_regression_zero_init加一层,0初始参数值逻辑回归模型,得到预测值、损失值。contrib.layers.optimize_loss函数优化损失值,根据需要选择不同优化函数和学习速率。optimize_loss训练算子(Training Operator),每次训练迭代优化模型参数和决定模型发展方向。返回预测值、预测概率,或其中一个。

iris数据分类。Scikit-learn datasets引入数据,cross_validation数据分训练、评估。my_model放learn.Estimator,Scikit-learn风格fit、predict函数。快速定义自己的模型函数,直接利用Estimator各种功能,直接分布式模型训练,不用担心实现细节。

模式(Mode)定义函数,常用模式training、eva luation、prediction,可以在ModeKeys找到。加条件语句实现复杂逻辑。params调节参数,fit函数可以给更多参数。

建立机器学习Estimator。BaseEstimator最抽象最基本实现TensorFlow模型训练、评估类。fit()模型训练,partial_fit()线上训练,eva luate()评估模型,predict()使用模型预测新数据。graph_actions复杂逻辑模型训练、预测。SuperVisor、Coordinator、QueueRunner,分布式训练、预测。learn.DataFeeder、learn.DataFrame类自动识别、处理、迭代不同类型数据。estimators.tensor_signature对数据进行兼容性判断(稀疏张量Sparse Tensor),数据读入更方便、稳定。BaseEstimator对learn.monitors及模型存储进行初始化设置。learn.monitors监测模型训练。

BaseEstimator,_get_train_ops()、_get_eva l_ops()、_get_predict_ops()子类实现。

Estimator,_get_train_ops()接受features、targets参数,自定义模型函数返回Operation、损失Tensor Tuple,在每个训练迭代优化模型参数。非监督学习模型Estimator,忽略targets。

_get_eva l_ops(),BaseEstimator子类自定义metrics评估每个模型训练迭代。contrib.metrics。自定义metrics函数返回一个Tensor对象Python字黄代表评估Operation,每次迭代用到。

自定义模型对新数据预测、计算损失值,ModeKeys eva l表明函数只在评估用。contrib.metrics模块,streaming_mean对loss计算平均流,之前计算过平均值加这次迭代损失值再计算平均值。

_get_predict_ops()实现自定义预测。对预测结果进一步处理。预测概率转换简单预测结果,概率平滑加工(Smooting)。函数返回Tensor对象Python字典代表预测Operation。Estimator predict()函数,Estimator分布式功能。非监督模型,类似Sckkit-learn transform()函数。

逻辑回归(LogisticRegressor),Estimator提供绝大部分实现,LogisticRegressor只需提供自己的metrics(AUC、accuracy、precision、recall,处理二分类问题),快速在LogiticRegressor基础写子类实现个性化二分类Estimator,不需要关心其他逻辑实现。

TF.Learn 随机森林模型TensorForestEstimator许多细节实现在contrib.tensor_forest。只利用、暴露高阶需要用到成分到TensorForestEstimator。超参数通过contrib.tensor_forest.ForestHParams传到构造函数params,构造函数params.fill()建造随机森林TensorFlow图,tensor_forest.RandomForestGraphs。

实现复杂,需要高效率,细节用C++实现单独Kernel。_get_predict_ops()函数,tensor_forest内部C++实现data_ops.ParseDataTensorOrDict()函数检测、转换读入数据到可支持数据类型,RandomForestGraphs inference_graph函数得到预测Operation。

_get_train_ops()、_get_eva l_ops()函数分别调用RandomForestGraphs.trainning_loss()、RandomForestGraphs.onference_graph()函数,data_ops.ParseDataTensorOrDict、data_ops.ParseLabelTensorOrDict分别检测、转换features、targets到兼容数据类型。

调节RunConfig运行时参数。RunConfig,TF.Le
学习笔记TF042:TF.Learn、分布式Estimator、深度学习Estimator(一) https://www.cppentry.com/bencandy.php?fid=87&id=124344

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇总结:Ruby里是值传递还是引用传递 下一篇【夯实Ruby基础】Ruby快速入门