概要
有人常问,云巴实时通信系统到底提供了一种怎样的服务,与其他提供推送或 IM 服务的厂商有何本质区别。其实,从技术角度分析,云巴与其它同类厂商都是面向开发者的通信服务,宏观的编程模型都是大同小异,真正差异则聚焦于产品定位,业务模式,基础技术水平等诸多细节上。本文暂不讨论具体产品形态上的差异,着重从技术角度浅谈实时通信的编程模型。
什么是实时通信
「实时」(realtime) 一词在语义层面上隐含着对时间的约束(real-time constraint),在工程上,我们习惯对「需要在一定时间内」 完成的操作称为「实时操作」。通常,实时可细分为 「软实时」(soft realtime),「准实时」(firm realtime)和 「硬实时」(hard realtime)。它们之间的差异,简单来说,就是对无法在指定时间区间内(deadline)完成事务的容忍程度。维基百科上对这三者有如下解释:
- Hard – missing a deadline is a total system failure.
- Firm – infrequent deadline misses are tolerable, but may degrade the system's quality of service. The usefulness of a result is zero after its deadline.
- Soft – the usefulness of a result degrades after its deadline, thereby degrading the system's quality of service.
假如我们把无法按时完成任务(missing a deadline)称为异常事件,那么硬实时系统无法容忍异常事件;准实时系统则可容忍极少量的异常事件,但超过一定数量后系统可用性为 0;软实时系统可容忍异常事件,但是每发生一次异常事件,系统可用性降低。
综上所述,我们可以举例:
-
火星上的无人探测器是硬实时系统,因为一次异常事件就极有可能导致探测器不可用,同理可类推核电站的监控系统,军用无人机系统,远程导弹的导航系统等一系列军工产品;
-
金融交易系统是准实时系统,此类系统可容忍极少数的交易故障,一旦故障次数增加,系统就会陷入崩溃状态;
-
短信 / 手机推送 / 电商购物等都是软实时系统。对于此类系统,用户都可以容忍异常事件,但是太多的异常事件则会大幅降低系统可用程度,用户体验急剧下滑。
就目前来说,绝大多数互联网产品(甚至可以说是 100%)都是软实时系统。云巴实时通信系统的目标则是要做一个高可用的软实时系统。
一个最简单的实时通信编程模型
在软件工程中,很多复杂的项目其实都可以用一个非常简洁的模型来概括。正如爱因斯坦所说的:「一切都应该尽可能地简单,但不要太简单」(Everything should be made as simple as possible, but not simpler)。虽然这是描述物理世界的经验之谈,但同样适用于计算机领域,将物理世界的关系投射到某种人为语言(物理公式/计算机编程语言),其规律其实都是共通的。
让我们假设这么一个简单的场景:对 10 个客户端发送一条消息。
这个需求其实可以用伪码表示为:
for (i..10) {
send_message(get_socket(i))
}
如果下图所示:

在这个简单的需求下,我们只需要让这 10 个客户端分别跟服务器建立 TCP 连接(本文暂时只讨论 TCP 协议),然后遍历地发送消息即可。显而易见,这是一个 O(N)
复杂度的逻辑。
基于这个简单的模型,我们可以认为一条消息从发出到接收,有以下几个延时:
云巴实时通信系统以 200 ms 延迟作为总延迟标准,也就是说,假如网络链路是从北京到深圳,除去网络延迟的 40 ms,要想达到 200 ms 的通信时间,系统延迟必须小于 160 ms。
可以想象,当客户端数量达到一定数量级(比如百万级别)时,以上系统模型的实时性将面临极其严峻的考验。
分而治之
在海量用户下保持稳定的实时性,其实很多时候就只有一个手段:分而治之。
图 1 表示的是单机处理情况。当单机的处理能力,带宽都无法应对客户端数量急剧增加的时候,我们就必须将线路进行分割。而且图 1 只体现了推送的意图(单向),但通信往往是一个双向的概念,综上,我们将 图 1 改成下面的 图 2:

这样每台机器就可以处理符合其当前水位的连接。
在现实开发中,我们可能不仅仅满足于一个如此简单的消息系统,我们可能想要有离线消息,数据统计,数据缓存,限流等一系列操作,所以我们还可以再优化一下架构:
这样我们可以得到以下的图 3:

在这个模型中,网络接入层和消息业务逻辑层整体上应该是一个 stateless 的模块,可以较为轻松地做横行扩展。存储层作为一个有状态的模块,想要做到横行扩展是一件很不容易的事情。如果撇开这点来看,至此,这个模型理论上在应对海量用户的场景下应该是有效的。
通信协议和技术栈的选择
做一个消息系统,不可避免地要涉及到对通信协议的选择。我们在对通信协议的选择上,遵循以下几个原则:
综上,我们没有重新自定义一份通信协议,而是选择了基于长连接的 MQTT。从很多角度来看,MQTT 非常适合做消息总线的通信协议,而且协议栈也足够轻巧和易于实现。云巴实时消息系统传输的消息体积较小(一般小于 4 KB),比如控制信号,普通聊天信息等。就这点上,针对物联网设计的 MQTT 有着天然的优势。后面,在不断地研究中我们又发现,MQTT 其实不仅仅适用于物联网场景,在很多要求低延迟高稳定性的非物联网场景也同样适用(比如手机端 app 推送,IM,直播弹幕等)。
从前面几个章节我们看到,云巴消息系统是一个典型的 IO 密集型系统。在出于开发效率和稳定的考虑下,我们选了 Erlang/OTP 作为主力开发语言。Erlang/OTP 作为一门小众开发语言(无论是国内还是国际),在应付这类 IO 密集型系统上,有着得天独厚的优势(可参考 RabbitMQ 这个基于 Erlang/OTP 的著名开源项目):
-
基于 actor 的进程创建模型,可以为每个数据包创建一个 Erlang 处理进程,充分利用多核;
-
OTP 的开发框架抽象了分布式开发的许多细节,使得开发者在很小的心智负担下就能轻松快速地开发出功能原型;
-
Erlang/OTP 充分运用了容错思想,应对异常不是防,而是容,很多时候我们写出一些安全逻辑上有漏洞的代码,在 Erlang/OTP 上居然也能工作得好好的;
随着不断深入地使用 Erlang/OTP