ze=4
V(g)[deg>=2]$size=6
V(g)[deg>=3]$size=8
V(g)[deg>=4]$size=10
V(g)[deg>=5]$size=12
V(g)[deg>=6]$size=14
vertex.color
设置节点的颜色
color<-read.csv("c:/color.csv",header=F)
col<-c("red","skyblue")
V(g)$color=col[color[,1]]
vertex.label
设置节点的标记
V(g)$label=V(g)$name
vertex.label=V(g)$label
vertex.label.cex
设置节点标记的大小
edge.color
设置边的颜色
E(g)$color="grey"
for(i in 1:length(pa3[,1])){
E(g,path=pa3[i,])$color="red"
}
edge.color=E(g)$color
edge.arrow.mode
设置边的连接方式
edge.arrow.size
设置箭头的大小
E(g)$width=1
设置边的宽度
2)聚类分析
边的中介度聚类
system.time(ec <- edge.betweenness.community(g))
print(modularity(ec))
plot(ec, g,vertex.size=5,vertex.label=NA)
随机游走
system.time(wc <- walktrap.community(g))
print(modularity(wc))
#membership(wc)
plot(wc , g,vertex.size=5,vertex.label=NA)
特征值(个人理解觉得类似谱聚类)
system.time(lec <-leading.eigenvector.community(g))
print(modularity(lec))
plot(lec,g,vertex.size=5,vertex.label=NA)
贪心策略
system.time(fc <- fastgreedy.community(g))
print(modularity(fc))
plot(fc, g,vertex.size=5,vertex.label=NA)
多层次聚类
system.time(mc <- multilevel.community(g, weights=NA))
print(modularity(mc))
plot(mc, g,vertex.size=5,vertex.label=NA)
标签传播
system.time(lc <- label.propagation.community(g))
print(modularity(lc))
plot(lc , g,vertex.size=5,vertex.label=NA)
文件输出
zz<-file("d:/test.txt","w")
cat(x,file=zz,sep="\n")
close(zz)
查看变量数据类型和长度
mode(x)
length(x)
参考链接
1.易百R语言教程
2.R语言igraph包构建网络图——详细展示构建图的基本过程
3.官方R语言igraph说明文档
4.官方R语言手册
5.R包igraph探究
6.模块度(Modularity)与Fast Newman算法讲解
7.模块发现算法综述