TOP

R语言学习 - 热图美化(一)
2017-10-09 13:51:54 】 浏览:8015
Tags:语言学习 美化

实际应用中,异常值的出现会毁掉一张热图。这通常不是我们想要的。为了更好的可视化效果,需要对数据做些预处理,主要有对数转换,Z-score转换,抹去异常值,非线性颜色等方式。

对数转换
为了方便描述,假设下面的数据是基因表达数据,4个基因 (a, b, c, d)和5个样品 (Grp_1, Grp_2, Grp_3, Grp_4),矩阵中的值代表基因表达FPKM值。
data <- c(rnorm(5,mean=5), rnorm(5,mean=20), rnorm(5, mean=100), c(600,700,800,900,10000))
data <- matrix(data, ncol=5, byrow=T)
data <- as.data.frame(data)
rownames(data) <- letters[1:4]
colnames(data) <- paste("Grp", 1:5, sep="_")
data
    Grp_1      Grp_2      Grp_3      Grp_4        Grp_5
a   6.61047  20.946720 100.133106 600.000000     5.267921
b  20.80792  99.865962 700.000000   3.737228    19.289715
c 100.06930 800.000000   6.252753  21.464081    98.607518
d 900.00000   3.362886  20.334078 101.117728 10000.000000
# 对数转换
# +1是为了防止对0取对数;是加1还是加个更小的值取决于数据的分布。
# 加的值一般认为是检测的低阈值,低于这个值的数字之间的差异可以忽略。
data_log <- log2(data+1)
data_log
    Grp_1    Grp_2    Grp_3    Grp_4     Grp_5
a 2.927986 4.455933 6.660112 9.231221  2.647987
b 4.446780 6.656296 9.453271 2.244043  4.342677
c 6.659201 9.645658 2.858529 4.489548  6.638183
d 9.815383 2.125283 4.415088 6.674090 13.287857
data_log$ID = rownames(data_log)
data_log_m = melt(data_log, id.vars=c("ID"))

p <- ggplot(data_log_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) + theme(legend.position="top") +  geom_tile(aes(fill=value)) + scale_fill_gradient(low = "white", high = "red")
ggsave(p, filename="heatmap_log.pdf", width=8, height=12, units=c("cm"),colormodel="srgb")
对数转换后的数据,看起来就清晰的多了。而且对数转换后,数据还保留着之前的变化趋势,不只是基因在不同样品之间的表达可比 (同一行的不同列),不同基因在同一样品的值也可比 (同一列的不同行) (不同基因之间比较表达值存在理论上的问题,即便是按照长度标准化之后的FPKM也不代表基因之间是完全可比的)。
Z-score转换
Z-score又称为标准分数,是一组数中的每个数减去这一组数的平均值再除以这一组数的标准差,代表的是原始分数距离原始平均值的距离,以标准差为单位。可以对不同分布的各原始分数进行比较,用来反映数据的相对变化趋势,而非绝对变化量。
data_ori <- "Grp_1;Grp_2;Grp_3;Grp_4;Grp_5
a;6.6;20.9;100.1;600.0;5.2
b;20.8;99.8;700.0;3.7;19.2
c;100.0;800.0;6.2;21.4;98.6
d;900;3.3;20.3;101.1;10000"
data <- read.table(text=data_ori, header=T, row.names=1, sep=";", quote="")
 
# 去掉方差为0的行,也就是值全都一致的行
data <- data[apply(data,1,var)!=0,]
data
  Grp_1 Grp_2 Grp_3 Grp_4   Grp_5
a   6.6  20.9 100.1 600.0     5.2
b  20.8  99.8 700.0   3.7    19.2
c 100.0 800.0   6.2  21.4    98.6
d 900.0   3.3  20.3 101.1 10000.0

# 标准化数据,获得Z-score,并转换为data.frame
data_scale <- as.data.frame(t(apply(data,1,scale)))
 
# 重命名列
colnames(data_scale) <- colnames(data)
data_scale
       Grp_1      Grp_2      Grp_3      Grp_4      Grp_5
a -0.5456953 -0.4899405 -0.1811446  1.7679341 -0.5511538
b -0.4940465 -0.2301542  1.7747592 -0.5511674 -0.4993911
c -0.3139042  1.7740182 -0.5936858 -0.5483481 -0.3180801
d -0.2983707 -0.5033986 -0.4995116 -0.4810369  1.7823177
data_scale$ID = rownames(data_scale)
data_scale_m = melt(data_scale, id.vars=c("ID"))
 
p <- ggplot(data_scale_m, aes(x=variable,y=ID)) + xlab("samples") + ylab(NULL) + theme_bw() + theme(panel.grid.major = element_blank()) + theme(legend.key=element_blank()) + theme(axis.text.x=element_text(angle=45,hjust=1, vjust=1)) +  geom_tile(aes(  
		
R语言学习 - 热图美化(一) https://www.cppentry.com/bencandy.php?fid=91&id=124499

首页 上一页 1 2 3 下一页 尾页 1/3/3
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇R语言学习 - 热图简化 下一篇R语言学习 - 线图绘制