设为首页 加入收藏

TOP

《FPGA全程进阶---实战演练》第二十一章 细说低速与高速电路设计之电阻 电容 电感 磁珠(一)
2017-10-10 12:27:03 】 浏览:1358
Tags:FPGA 全程 进阶 --- 实战 演练 二十一 细说 低速 高速 电路设计 电阻 电容 电感 磁珠

  1.1 什么是高速电路

  信号的最高频率成分是取决于有效频率,而不是周期频率。

  高速电路的定义是根据信号的有效频率来计算的,在现实世界中,任何信号都是由多个频率分量的正弦波叠加而成的。定义各正弦波分量的幅值为VN,则VN = 2 / (3.14 x N),可见各级谐波分量的幅值与频率成反比。现实信号,随着频率的升高,其各级谐波分量的幅值比理想方波中相同频率正弦波分量的幅值下降的更快,直到某级谐波分量。其幅值下降到理想方波中对应分量的70%(即功率下降到50%),定义该谐波分量的频率为信号的有效频率,其计算公式为:Fknee = 0.5 / Tr(10% ~ 90%),其中Tr(10% ~ 90%)为信号上升沿部分的10%~90%,一般在数据手册中都会给出相应的时间。如图21.1中所示的t3

wps37F6.tmp

图21.1 某手册输出信号上升时间

  1.2 区分高速和低速电路

  在低速领域,电容和电感可以认为是理想器件,电容和电感工作频率较低,可以视为断路,但在高速电路时,电容和电感都不是理想器件。电容和电感就相当于短路,电容C的电抗值为 1 / (2πF x C),由其公式也可以看出其在高速情况下相当于短路。

  所以对于低速而言,由于传输路径上信号各点的电平大致相同,所以可以采用集总式看待传输路径,即传输路径上各点的状态相同。对于高速电路来说,传输路径上各点的电平都不相同,所以采用分布式的思维来看待传输路径。

  所以对于高速和低速的区分,需要考虑信号频率和传输路径长度。

  判断步骤: 1)获得信号的有效频率Fknee 和走线长度 L;

                   2)利用Fknee 计算出信号的有效波长λknee,,即λknee = C /Fknee ;

                   3)判断L与1/6 x λknee之间的关系,若L > 1/6 x λknee,则信号为高速信号,反之为 低速信号;

  其中λknee  = C / Fknee;其中C是比光速略低的速度,Fknee = 0.5 / Tr(10% ~ 90%),还需注意的是,若是对于百兆频率的信号,若是没有现成的板子,可以对有效频率Fknee进行估算, Fknee 约为 7倍的Fclock(信号的周期)。

  由上述的步骤也可以看出,信号频率越高,则低速和高速分水岭的信号线长度越短,反之亦然,

1.3 高速电路中的电容电阻

在第三章的时候已经提到过电容相关的知识,这里继续做一些补充。

刚才上面也提到过关于在高速电路中,电容和电阻不能当做理想元器件看待,那么在选用电容和电阻时需要注意以下问题:

电阻:

1)0Ω电阻对高速电路设计有重要的意义,在一个CPU兼容多个外设器件时,可以用0Ω作为一些周围器件的连接点;

2)电阻选择时需要考虑额定功率,而且在特别场合,电阻的精度也决定输出的电压值;

3)电阻选择时有时需要计算,是否适合CPU或者IC的VIH和VIL,否则可能由于电阻选择的不当,导致不满足低电平要求;

4)电阻串在具有R,C,L的回路中,可以影响品质因数Q,Q可以理解为储存能量与一周期内消耗能量之比。在储能和选频电路中,Q越大损耗和滤出其他频带信号的能力越好。但在电源电路中Q值尽量不要太大,否则会引起电源信号的振铃。

5)LC滤波电路中,在电感之后串接一个电阻R,不仅能衰减高频段噪声,而且能衰减低频段噪声,作为一个整个全频段衰减器。

电容:

电容在高速电路中会表现出ESR,ESL,以及泄露特性;其作用分别如下:

1)电荷缓冲池:在高速运行器件的电流和功耗是不断变化的,为了保证器件不随电流和功耗的剧烈变化而同程度变化,希望电源尽量稳定,而电容恰恰充当这一角色;

2)高频噪声的重要泄放通道:在选用电阻时,往往希望其具有较小的ESR特性,使得对高频信号具有交流耦合,产生对高频信号产生衰减,所以看到往往在输入和输出电源信号会并联很多电容,这样是滤掉高低频交流信号,同时也起到减小ESR值;还有一个好处就是,因为噪声往往不是一个频率点,增加多个电容可以占据一段频带,可以滤除不同频带的噪声;

3)实现交流耦合:有些场合信号带有的直流分量对于两者器件不兼容时,可以在一端加上电容,滤掉其直流分量,实现对直流隔离;

1.4 高速电路中的电容ESR和ESL特性

  上述对于电容提到ESR,ESL特性,ESR是电容等效于 电阻和电容之间等效电阻构成,ESL是电感和电容的串联等效电感构成。ESL主要取决于电容的工作频率,工作温度,电容本身的导线电阻以及封装尺寸等。电容的阻抗 Z = 1 / (jwC),可见其容值越小,对低频信号的衰减越明显。

  值得一提的是,有时电容并非ESR越低越好,这个主要根据器件的选型确定。在大多数的情况下,较低的ESR可以:1)可以较低功耗;2)可以对高频信号进行交流耦合,并且在电源和地之间的回流提供一个较低的阻抗回路;

  电容器件的阻抗--频率曲线由其电容分量和ESL共同决定的,谐振频率 F = ( ESL x C )-1/2,C和ESL越大,频率越低,适合滤除低频。C和ESL越小,F越高,适合滤除高频;(封装可以影响ESL特性)。上述公式似乎对于工程师所认同的滤除高频信号选用小电容,滤除低频信号选用大电容很好的验证。但是若是考虑ESL的话,并非完全是这样。如下图21.2所示:

wpsD9A0.tmp

图21.2 阻抗--频率曲线

  滤波电容的作用机制是为噪声等干扰提供一条低阻抗回路,在噪声频率点上,要求滤波电容的阻抗较小,即当噪声频率落在谐振点附近时,滤波效果最好。由上述提到的谐振公式,F = ( ESL x C )-1/2,在谐振点之前,电容起主导作用,在谐振点之后,ESL起主导作用。

  在高频电路中,噪声往往不在一个频带上,而是占据一定的频带,为了消除这些噪声,必须要拓宽滤波频带。所以在选择电容时需要选择不同的电容构成一个比较宽的低阻抗频带,以尽可能的滤除低阻抗频带,如下如21.3所示。

wpsD9D0.tmp

图21.3 滤除噪声频带曲线

  下面讨论由于ESL的不同对滤波效果的影响。

  图21.4是0603封装,阻值分别为1uF,0.01uF的阻抗频率曲线图,利用之前的谐振频率公式,可以画出其阻抗频率曲线图。可以看出封装相同,即ESL相同,不同阻值之间的,0.01uF并未起到滤除高频噪声信号作用。

wpsD9E0.tmp

图21.4 封装相同不同阻值

  图21.5是0603封装的1uF,0402封装的0.01uF阻抗频率曲线图,由于封装的不同,以及阻值的不一样,间接影响到ESL值,进而影响到F的值。所以拓宽了滤除噪声频带。

wpsD9F1.tmp

图21.5 封装不同不同阻值

  有些时候,有些工程师喜欢将多个电容进行并联在电压信号输出地方,这样做可以起到减小ESR值,但是对于拓宽滤除噪声频带几

首页 上一页 1 2 下一页 尾页 1/2/2
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇FPGA内部动态可重置PLL讲解(一) 下一篇FPGA内部动态可重置PLL讲解(二)

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目