大数据表的查询优化方案(二)

2014-11-23 17:32:20 · 作者: · 浏览: 170
NT '成员表ID', `name` varchar(128) COLLATE utf8_bin DEFAULT NULL COMMENT '成员姓名', `age` int(32) DEFAULT NULL COMMENT '成员年龄', PRIMARY KEY (`member_id`) ) CREATE TABLE `member_introduction` ( `member_introduction_id` bigint(64) NOT NULL AUTO_INCREMENT COMMENT '成员介绍表ID', `member_id` bigint(64) DEFAULT NULL COMMENT '成员ID', `introduction` text COLLATE utf8_bin COMMENT '成员介绍', PRIMARY KEY (`member_introduction_id`), KEY `fk_member_id` (`member_id`), CONSTRAINT `fk_member_id` FOREIGN KEY (`member_id`) REFERENCES `member` (`member_id`) )

5. 建立中间表,以空间换时间

在有些情况下,是可以通过建立中间表来加快查询速度的,详情可看文章开头的例子。

6. 用内存缓存数据,以空间换时间

将常用而且不常修改的数据加载到内存中,直接从内存查询则可。

可以使用热门的缓存技术,如Memcache、Redis、Ehcache等。

7. 使用其他辅助技术

Solr:一种基于Lucene的JAVA搜索引擎技术