在分配了栈后,调用setup_thread_stack确定栈内的布局。这个函数完成的操作是:把父进程的thread_info(进程描述结构)值复制给tsk的进程描述结构。然后将tsk的进程描述符中的task域改为tsk.
[cpp]
#define task_thread_info(task) ((struct thread_info *)(task)->stack)
static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
*task_thread_info(p) = *task_thread_info(org);
task_thread_info(p)->task = p;
}
在执行完setup_thread_stack之后,父子进程除了stack的指针之外是完全一样的。
三,检查进程数创建限制
[cpp]
rt_mutex_init_task(p);//互斥锁初始化
#ifdef CONFIG_TRACE_IRQFLAGS
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->user->processes) >=
p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
p->user != current->nsproxy->user_ns->root_user)
goto bad_fork_free;
}
<span> </span>atomic_inc(&p->user->__count);
<span> </span>atomic_inc(&p->user->processes);
<span> </span>get_group_info(p->group_info);增加组的使用计数
进程结构task_struct中有一个域,名为:user_struct,这个域保存了当前用户的使用资源计数。
[cpp]
struct task_struct{
……
struct user_struct *user;
……
};
在user_struct结构中包含processes表示当前的用户能够创建最多的进程数。如果超过限制,就放弃创建进程。root用户除外。如果没有超过限制,就将user_struct结构的引用计数加1,并将已经创建的进程数加1.
四,线程检查
检查线程创建是否超过最大限制,这个比较简单
[cpp]
/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;
五,写入数据
在这里,进程描述符task_struct已经建立好了,其和父进程是一样的,除了栈地址不一样之外,现在开始修改一些值。
[cpp]
if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;
if (p->binfmt && !try_module_get(p->binfmt->module))
goto bad_fork_cleanup_put_domain;
p->did_exec = 0;当前还有加载任何执行的系统调用,所以为0以标识
delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
copy_flags(clone_flags, p);
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock);
clear_tsk_thread_flag(p, TIF_SIGPENDING);
init_sigpending(&p->pending);
p->utime = cputime_zero;
p->stime = cputime_zero;
p->gtime = cputime_zero;
p->utimescaled = cputime_zero;
p->stimescaled = cputime_zero;
p->prev_utime = cputime_zero;
#ifdef CONFIG_TASK_XACCT
p->rchar = 0; /* I/O counter: bytes read */
p->wchar = 0; /* I/O counter: bytes written */
p->syscr = 0; /* I/O counter: read syscalls */
p->syscw = 0; /* I/O counter: write syscalls */
#endif
task_io_accounting_init(p);
acct_clear_integrals(p);
p->it_virt_expires = cputime_zero;
p->it_prof_expires = cputime_zero;
p->it_sched_expires = 0;
INIT_LIST_HEAD(&p->cpu_timers[0]);
INIT_LIST_HEAD(&p->cpu_timers );
INIT_LIST_HEAD(&p->cpu_timers );
p->lock_depth = -1; /* -1 = no lock */
do_posix_clock_monotonic_gettime(&p->start_time);
p->real_start_time = p->start_time;
monotonic_to_bootbased(&p->real_start_time);
#ifdef CONFIG_SECURITY
p->security = NULL;
#endif
p->io_context = NULL;
p->audit_context = NULL;
cgroup_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_copy(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
goto bad_fork_cleanup_cgroup;
}
mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
p->irq_events = 0;
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
p->hardirqs_enabled = 1;
#else
p->hardirqs_enabled = 0;
#endif
p->hardirq_enable_ip = 0;
p->hardirq_enable_event = 0;
p->hardirq_disable_ip = _THIS_IP_;
p->hardirq_disable_event = 0;
p->softirqs_enabled = 1;
p->softirq_enable_ip = _THIS_IP_;
p->softirq_enable_event = 0;
p->softirq_disable_ip = 0;
p->softirq_disable_event = 0;
p->hardirq_context = 0;
p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP
p->lockdep_depth = 0; /* no locks held yet */
p->curr_chain_key = 0;
p->lockdep_recursion = 0;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
这里是对一些值进行初始化,和各种策略相关的值,如调度等等,有些值是很重要的。
六,加入调度
[cpp]
/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p, clone_flags);
这可以使用是进程可以参加调度,但此时进程的状态改为正在TASK_RUNNING,这以防止内核的其他部分将其改为可运行状态,因为我们对进程的设置还没有完成,这样调度进程会有问题。