poj1673 (一)

2014-11-23 21:42:24 · 作者: · 浏览: 13
所谓Exocenter就是垂心。不难证明。

\





 
#include    
#include    
#include    
struct point{ double x, y; };  
struct line{ point a, b; };  
  
double distance(point p1, point p2){  
    return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));  
}  
  
point intersection(line u, line v){  
    point ret = u.a;  
    double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))  
        / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));  
    ret.x += (u.b.x - u.a.x)*t;  
    ret.y += (u.b.y - u.a.y)*t;  
    return ret;  
}  
  
//外心   
point circumcenter(point a, point b, point c){  
    line u, v;  
    u.a.x = (a.x + b.x) / 2;  
    u.a.y = (a.y + b.y) / 2;  
    u.b.x = u.a.x - a.y + b.y;  
    u.b.y = u.a.y + a.x - b.x;  
    v.a.x = (a.x + c.x) / 2;  
    v.a.y = (a.y + c.y) / 2;  
    v.b.x = v.a.x - a.y + c.y;  
    v.b.y = v.a.y + a.x - c.x;  
    return intersection(u, v);  
}  
  
//内心   
point incenter(point a, point b, point c){  
    line u, v;  
    double m, n;  
    u.a = a;  
    m = atan2(b.y - a.y, b.x - a.x);  
    n = atan2(c.y - a.y, c.x - a.x);  
    u.b.x = u.a.x + cos((m + n) / 2);  
    u.b.y = u.a.y + sin((m + n) / 2);  
    v.a = b;  
    m = atan2(a.y - b.y, a.x - b.x);  
    n = atan2(c.y - b.y, c.x - b.x);  
    v.b.x = v.a.x + cos((m + n) / 2);  
    v.b.y = v.a.y + sin((m + n) / 2);  
    return intersection(u, v);  
}  
  
//垂心   
point perpencenter(point a, point b, point c){  
    line u, v;  
    u.a = c;  
    u.b.x = u.a.x - a.y + b.y;  
    u.b.y = u.a.y + a.x - b.x;  
    v.a = b;  
    v.b.x = v.a.x - a.y + c.y;  
    v.b.y = v.a.y + a.x - c.x;  
    return intersection(u, v);  
}  
  
//重心   
//到三角形三顶点距离的平方和最小的点   
//三角形内到三边距离之积最大的点   
point barycenter(point a, point b, point c){  
    line u, v;  
    u.a.x = (a.x + b.x) / 2;  
    u.a.y = (a.y + b.y) / 2;  
    u.b = c;  
    v.a.x = (a.x + c.x) / 2;  
    v.a.y = (a.y + c.y) / 2;  
    v.b = b;  
    return intersection(u, v);  
}  
  
//费马点   
//到三角形三顶点距离之和最小的点   
point fermentpoint(point a, point b, point c){  
    point u, v;  
    double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);  
    int i, j, k;  
    u.x = (a.x + b.x + c.x) / 3;  
    u.y = (a.y + b.y + c.y) / 3;  
    while (step >
1e-10) for (k = 0; k < 10; step /= 2, k++) for (i = -1; i <= 1; i++) for (j = -1; j <= 1; j++){ v.x = u.x + step*i; v.y = u.y + step*j; if (distance(u, a) + distance(u, b) + distance(u, c) > distance(v, a) + distance(v, b) + distance(v, c)) u = v; } return u; } int main() { int n; std::cin >> n; while (n--) { point a, b, c; std::cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y; point center = perpencenter(a, b, c); printf("%.4f %.4f\n", center.x, center.y); } } #include #include #include struct point{ double x, y; }; struct line{ point a, b; }; double distance(point p1, point p2){ return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y)); } point intersection(line u, line v){ point ret = u.a; double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x)) / ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x)); ret.x += (u.b.x - u.a.x)*t; ret.y += (u.b.y - u.a.y)*t; return ret; } //外心 point circumcenter(point a, point b, point c){ line u, v; u.a.x = (a.x + b.x) / 2; u.a.y = (a.y + b.y) / 2; u.b.x = u.a.x - a.y + b.y; u.b.y = u.a.y + a.x - b.x; v.a.x = (a.x + c.x) / 2; v.a.y = (a.y + c.y) / 2; v.b.x = v.a.x - a.y + c.y; v.b.y = v.a.y + a.x - c.x; return intersection(u, v); } //内心 point incenter(point a, point b, point c){ line u, v; double m, n; u.a = a; m = atan2(b.y - a.y, b.x - a.x); n = atan2(c.y - a.y, c.x - a.x); u.b.x = u.a.x + cos((m + n) / 2); u.b.y = u.a.y + sin((m + n) / 2); v.a = b; m = atan2(a.y - b.y, a.x - b.x); n = atan2(c.y - b.y, c.x - b.x); v.b.x = v.a.x + cos((m + n) / 2); v.b.y = v.a.y + sin((m + n) / 2); return intersection(u, v); } //垂心