决策树完结篇 (三)

2014-11-23 23:55:31 · 作者: · 浏览: 18
ee,featLabels,testVec): firstStr = list(inputTree.keys())[0] secondDict = inputTree[firstStr] featIndex = featLabels.index(firstStr) for key in secondDict.keys(): if testVec[featIndex] == key: if type(secondDict[key]).__name__=='dict': classLabel = classify(secondDict[key],featLabels,testVec) else: classLabel = secondDict[key] return classLabel myDat,labels = CreateDataSet() print(calcShannonEnt(myDat)) print(splitDataSet(myDat, 1, 1)) print(chooseBestFeatureToSplit(myDat)) myTree = createTree(myDat, labels) print(classify(myTree, labels, [1, 0])) print(classify(myTree, labels, [1, 1]))

吼吼,这样我们全部的决策树的东西就实践完毕了,祝大家学习工作愉快。