java提高篇(二三)-----HashMap(二)

2014-11-24 03:16:51 · 作者: · 浏览: 5
nt h, int length) { return h & (length-1); }

HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

这里我们假设length为16(2^n)和15,h为5、6、7。

\

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

\

从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。< http://www.2cto.com/kf/ware/vc/" target="_blank" class="keylink">vcD4KPHA+ICAgICAgINXiwO/O0sPH1NnAtLi0z7BwdXS1xMH3s8yjurWxztLDx8/r0ru49khhc2hNYXDW0MztvNPSu7bUa2V5LXZhbHVlyrGjrM+1zbPK18/Iu+G8xsvja2V5tcRoYXNoJiMyMDU0MDujrMi7uvO4+b7daGFzaCYjMjA1NDA7yLfIz9TadGFibGXW0LTmtKK1xM671sOho8j0uMPOu9bDw7vT0NSqy9ijrNTy1rG907LlyOuho7fx1PK1/LT6uMO0ptSqy9jBtLHtsqLSwLTLsci9z8bka2V5tcRoYXNoJiMyMDU0MDuho8jnufvBvbj2aGFzaCYjMjA1NDA7z+C1yChlLmhhc2ggPT0gaGFzaCAmYW1wOyZhbXA7ICgoayA9IGUua2V5KSA9PSBrZXkg"| key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

void addEntry(int hash, K key, V value, int bucketIndex) {
        //获取bucketIndex处的Entry
        Entry
  
    e = table[bucketIndex];
        //将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry 
        table[bucketIndex] = new Entry
   
    (hash, key, value, e); //若HashMap中元素的个数超过极限了,则容量扩大两倍 if (size++ >= threshold) resize(2 * table.length); }
   
  

这个方法中有两点需要注意:

一是链的产生。这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

二、扩容问题。

随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

五、读取实现:get(key)

相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。

public V get(Object key) {
        // 若为null,调用getForNullKey方法返回相对应的value
        if (key == null)
            return getForNullKey();
        // 根据该 key 的 hashCode 值计算它的 hash 码  
        int hash = hash(key.hashCode());
        // 取出 table 数组中指定索引处的值
        for (Entry
  
    e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
            Object k;
            //若搜索的key与查找的key相同,则返回相对应的value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }
  

在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。


>>>>>>欢迎各位关注我的个人站点:http://cmsblogs.com/