1:判断是否为平衡二叉树:
//方法1:
int TreeDepth(BTree* pRoot)
{
if (pRoot == NULL)
return 0;
int nLeftDepth = TreeDepth(pRoot->m_pLeft);
int nRightDepth = TreeDepth(pRoot->m_pRight);
return (nLeftDepth > nRightDepth)? (nLeftDepth+1):(nRightDepth+1);
}
bool IsBalanced(BTree* pRoot)
{
if (pRoot == NULL)
return true;
int nLeftDepth = TreeDepth(pRoot->m_pLeft);
int nRightDepth = TreeDepth(pRoot->m_pRight);
int diff = nRightDepth - nLeftDepth;
if (diff > 1 || diff < -1)
return false;
return IsBalanced(pRoot->m_pLeft)&&IsBalanced(pRoot->m_pRight);
}
/*
上面的方法:在求该节点的左右子树的深度的时候遍历一遍树,再次判断子树的平衡性的时候又要遍历
一遍树结构,造成遍历多次!
*/
bool IsBalanced3(BTree* pRoot, int& depth)
{
if(pRoot== NULL)
{
depth = 0;
return true;
}
int nLeftDepth;
bool bLeft= IsBalanced3(pRoot->m_pLeft, nLeftDepth);
int nRightDepth;
bool bRight = IsBalanced3(pRoot->m_pRight, nRightDepth);
if (bLeft && bRight && abs(nLeftDepth - nRightDepth) <=1)
{
depth = 1+(nLeftDepth > nRightDepth ? nLeftDepth : nRightDepth);
return true;
}
else
{
return false;
}
}
bool IsBalanced3(BTree* pRoot)
{
int depth = 0;
return IsBalanced3(pRoot, depth);
}
2:求二叉树的镜像
/*
求二叉树的镜像:
方法1: 前序遍历每个节点,如果遍历到的节点有子节点,就交换它的两个子节点。(先交换左子树和右子树,再对左子树和右子树进行镜像操作)
方法2: 如果二叉树不为空,求左子树和右子树的镜像,然后再交换左子树和右子树
*/
void Mirror(BTree* &pRoot)
{
if(pRoot == NULL)
return;
if(pRoot->m_pLeft ==NULL && pRoot->m_pRight == NULL)
return;
BTree* pTemp = pRoot->m_pLeft;
pRoot->m_pLeft = pRoot->m_pRight;
pRoot->m_pRight = pTemp;
if(pRoot->m_pLeft)
Mirror(pRoot->m_pLeft);
if(pRoot->m_pRight)
Mirror(pRoot->m_pRight);
}
BTree* Mirror2(BTree* pRoot)
{
if(pRoot == NULL)
return NULL;
BTree* pLeft = Mirror2(pRoot->m_pLeft);
BTree* pRight = Mirror2(pRoot->m_pRight);
pRoot->m_pLeft = pRight;
pRoot->m_pRight = pLeft;
return pRoot;
}
完整测试代码:
// BalanceOfBT.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #includeusing namespace std; class BTree { public: int m_nValue; BTree* m_pLeft; BTree* m_pRight; BTree(int m):m_nValue(m) { m_pLeft = m_pRight = NULL; } }; //二叉树的插入实现 void Insert(int value, BTree* &root) { if (root == NULL) { root = new BTree(value); } else if(value < root->m_nValue) Insert(value,root->m_pLeft); else if(value > root->m_nValue) Insert(value,root->m_pRight); else ; } //方法1: int TreeDepth(BTree* pRoot) { if (pRoot == NULL) return 0; int nLeftDepth = TreeDepth(pRoot->m_pLeft); int nRightDepth = TreeDepth(pRoot->m_pRight); return (nLeftDepth > nRightDepth)? (nLeftDepth+1):(nRightDepth+1); } bool IsBalanced(BTree* pRoot) { if (pRoot == NULL) return true; int nLeftDepth = TreeDepth(pRoot->m_pLeft); int nRightDepth = TreeDepth(pRoot->m_pRight); int diff = nRightDepth - nLeftDepth; if (diff > 1 || diff < -1) return false; return IsBalanced(pRoot->m_pLeft)&&IsBalanced(pRoot->m_pRight); } /* 上面的方法:在求该节点的左右子树的深度的时候遍历一遍树,再次判断子树的平衡性的时候又要遍历 一遍树结构,造成遍历多次! */ bool IsBalanced3(BTree* pRoot, int& depth) { if(pRoot== NULL) { depth = 0; return true; } int nLeftDepth; bool bLeft= IsBalanced3(pRoot->m_pLeft, nLeftDepth); int nRightDepth; bool bRight = IsBalanced3(pRoot->m_pRight, nRightDepth); if (bLeft && bRight && abs(nLeftDepth - nRightDepth) <=1) { depth = 1+(nLeftDepth > nRightDepth ? nLeftDepth : nRightDepth); return true; } else { return false; } } bool IsBalanced3(BTree* pRoot) { int depth = 0; return IsBala