设为首页 加入收藏

TOP

Linux的命名空间详解--Linux进程的管理与调度(二)【转】(一)
2019-09-01 23:09:57 】 浏览:77
Tags:Linux 命名 空间 详解 --Linux 进程 管理 调度

Linux Namespaces机制提供一种资源隔离方案。

PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace。每个Namespace里面的资源对其他Namespace都是透明的。要创建新的Namespace,只需要在调用clone时指定相应的flag。 Linux Namespaces机制为实现基于容器的虚拟化技术提供了很好的基础,LXC(Linux containers)就是利用这一特性实现了资源的隔离。不同Container内的进程属于不同的Namespace,彼此透明,互不干扰。下面我们就从clone系统调用的flag出发,来介绍各个Namespace。

命名空间提供了虚拟化的一种轻量级形式,使得我们可以从不同的方面来查看运行系统的全局属性。该机制类似于Solaris中的zone或 FreeBSD中的jail。对该概念做一般概述之后,我将讨论命名空间框架所提供的基础设施。

命名空间概念

传统上,在Linux以及其他衍生的UNIX变体中,许多资源是全局管理的。

例如,系统中的所有进程按照惯例是通过PID标识的,这意味着内核必须管理一个全局的PID列表。而且,所有调用者通过uname系统调用返回的系统相关信息(包括系统名称和有关内核的一些信息)都是相同的。用户ID的管理方式类似,即各个用户是通过一个全局唯一的UID号标识。

全局ID使得内核可以有选择地允许或拒绝某些特权。虽然UID为0的root用户基本上允许做任何事,但其他用户ID则会受到限制。例如UID为n 的用户,不允许杀死属于用户m的进程(m≠ n)。但这不能防止用户看到彼此,即用户n可以看到另一个用户m也在计算机上活动。只要用户只能操纵他们自己的进程,这就没什么问题,因为没有理由不允许用户看到其他用户的进程。

但有些情况下,这种效果可能是不想要的。如果提供Web主机的供应商打算向用户提供Linux计算机的全部访问权限,包括root权限在内。传统上,这需要为每个用户准备一台计算机,代价太高。使用KVM或VMWare提供的虚拟化环境是一种解决问题的方法,但资源分配做得不是非常好。计算机的各个用户都需要一个独立的内核,以及一份完全安装好的配套的用户层应用。

命名空间提供了一种不同的解决方案,所需资源较少。在虚拟化的系统中,一台物理计算机可以运行多个内核,可能是并行的多个不同的操作系统。而命名空间则只使用一个内核在一台物理计算机上运作,前述的所有全局资源都通过命名空间抽象起来。这使得可以将一组进程放置到容器中,各个容器彼此隔离。隔离可以使容器的成员与其他容器毫无关系。但也可以通过允许容器进行一定的共享,来降低容器之间的分隔。例如,容器可以设置为使用自身的PID集合,但仍然与其他容器共享部分文件系统。

本质上,命名空间建立了系统的不同视图。此前的每一项全局资源都必须包装到容器数据结构中,只有资源和包含资源的命名空间构成的二元组仍然是全局唯一的。虽然在给定容器内部资源是自足的,但无法提供在容器外部具有唯一性的ID。

考虑系统上有3个不同命名空间的情况。命名空间可以组织为层次,我会在这里讨论这种情况。一个命名空间是父命名空间,衍生了两个子命名空间。假定容器用于虚拟主机配置中,其中的每个容器必须看起来像是单独的一台Linux计算机。因此其中每一个都有自身的init进程,PID为0,其他进程的PID 以递增次序分配。两个子命名空间都有PID为0的init进程,以及PID分别为2和3的两个进程。由于相同的PID在系统中出现多次,PID号不是全局唯一的。

虽然子容器不了解系统中的其他容器,但父容器知道子命名空间的存在,也可以看到其中执行的所有进程。图中子容器的进程映射到父容器中,PID为4到 9。尽管系统上有9个进程,但却需要15个PID来表示,因为一个进程可以关联到多个PID。至于哪个PID是”正确”的,则依赖于具体的上下文。

如果命名空间包含的是比较简单的量,也可以是非层次的,例如下文讨论的UTS命名空间。在这种情况下,父子命名空间之间没有联系。

请注意,Linux系统对简单形式的命名空间的支持已经有很长一段时间了,主要是chroot系统调用。该方法可以将进程限制到文件系统的某一部分,因而是一种简单的命名空间机制。但真正的命名空间能够控制的功能远远超过文件系统视图。

Linux内核命名空间描述

在Linux内核中提供了多个namespace,其中包括fs (mount), uts, network, sysvipc, 等。一个进程可以属于多个namesapce,既然namespace和进程相关,那么在task_struct结构体中就会包含和namespace相关联的变量。在task_struct 结构中有一个指向namespace结构体的指针nsproxy。

struct task_struct
{
……..
/* namespaces */
         struct nsproxy *nsproxy;
…….
}

再看一下nsproxy是如何定义的,在include/linux/nsproxy.h文件中,这里一共定义了5个各自的命名空间结构体,在该结构体中定义了5个指向各个类型namespace的指针,由于多个进程可以使用同一个namespace,所以nsproxy可以共享使用,count字段是该结构的引用计数。

/* 'count' is the number of tasks holding a reference.
 * The count for each namespace, then, will be the number
 * of nsproxies pointing to it, not the number of tasks.
 * The nsproxy is shared by tasks which share all namespaces.
 * As soon as a single namespace is cloned or unshared, the
 * nsproxy is copied
*/
struct nsproxy
{
         atomic_t count;
         struct uts_namespace *uts_ns;
         struct ipc_namespace *ipc_ns;
         struct mnt_namespace *mnt_ns;
         struct pid_namespace *pid_ns_for_children;
         struct net             *net_ns;
};
  1. UTS命名空间包含了运行内核的名称、版本、底层体系结构类型等信息。UTS是UNIX Timesharing System的简称。
  2. 保存在struct ipc_namespace中的所有与进程间通信(IPC)有关的信息。
  3. 已经装载的文件系统的视图,在struct mnt_namespace中给出。
  4. 有关进程ID的信息,由struct pid_namespace提供。
  5. struct net_ns包含所有网络相关的命名空间参数。

系统中有一个默认的nsproxy,init_nsproxy,该结构在task初始化是也会被初始,定义在include/linux/init_task.h

#define INIT_TASK(tsk)  \
{
……..
         .nsproxy   = &init_nsproxy,      
…
首页 上一页 1 2 3 下一页 尾页 1/3/3
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇arm平台的调用栈回溯(backtrace) 下一篇搭建最小linux系统

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目