设为首页 加入收藏

TOP

JavaScript算法模式——动态规划和贪心算法(一)
2019-09-17 15:20:48 】 浏览:38
Tags:JavaScript 算法 模式 动态 规划 贪心

动态规划

  动态规划(Dynamic Programming,DP)是一种将复杂问题分解成更小的子问题来解决的优化算法。下面有一些用动态规划来解决实际问题的算法:

最少硬币找零

  给定一组硬币的面额,以及要找零的钱数,计算出符合找零钱数的最少硬币数量。例如,美国硬币面额有1、5、10、25这四种面额,如果要找36美分的零钱,则得出的最少硬币数应该是1个25美分、1个10美分和1个10美分共三个硬币。这个算法要解决的就是诸如此类的问题。我们来看看如何用动态规划的方式来解决。

  对于每一种面额,我们都分别计算所需要的硬币数量。具体算法如下:

  1. 如果全部用1美分的硬币,一共需要36个硬币
  2. 如果用5美分的硬币,则需要7个5美分的硬币 + 1个1美分的硬币 = 8个硬币
  3. 如果用10美分的硬币,则需要3个10美分的硬币 + 1个5美分的硬币 + 1个1美分的硬币 = 5个硬币
  4. 如果用25美分的硬币,则需要1个25美分的硬币 + 1个10美分的硬币 + 1个1美分的硬币 = 3个硬币

  对应的示意图如下:

  方案4的硬币总数最少,因此为最优方案。

  具体的代码实现如下:

function minCoinChange(coins, amount) {
    let result = null;
    if (!amount) return result;

    const makeChange = (index, value, min) => {
        let coin = coins[index];
        let newAmount = Math.floor(value / coin);
        if (newAmount) min[coin] = newAmount;
        if (value % coin !== 0) {
            makeChange(--index, value - coin * newAmount, min);
        }
    };

    const arr = [];
    for (let i = 0; i < coins.length; i++) {
        const cache = {};
        makeChange(i, amount, cache);
        arr.push(cache);
    }

    console.log(arr);
    let newMin = 0;
    arr.forEach(item => {
        let min = 0;
        for (let v in item) min += item[v];
        if (!newMin || min < newMin) {
            newMin = min;
            result = item;
        }
    });
    return result;
}

  函数minCoinChange()接收一组硬币的面额,以及要找零的钱数。我们将上面例子中的值传入:

const result = minCoinChange2([1, 5, 10, 25], 36);
console.log(result);

  得到如下结果:

[
  { '1': 36 },
  { '1': 1, '5': 7 },
  { '1': 1, '5': 1, '10': 3 },
  { '1': 1, '10': 1, '25': 1 }
]
{ '1': 1, '10': 1, '25': 1 }

  上面的数组是我们在代码中打印出来的arr的值,用来展示四种不同面额的硬币作为找零硬币时,实际所需要的硬币种类和数量。最终,我们会计算arr数组中硬币总数最少的那个方案,作为minCoinChange()函数的输出。

  当然在实际应用中,我们可以把硬币抽象成任何你需要的数字,这个算法能给出你满足结果的最小组合。

背包问题

  背包问题是一个组合优化问题,它被描述为:给定一个具有固定容量的背包capacity,以及一组具有价值(value)和重量(weight)的物品,找出一个最优方案,使得装入背包的物品的总重量不超过capacity,且总价值最大。

  假设我们有以下物品,且背包的总容量为5:

物品# 重量 价值
1 2 3
2 3 4
3 4 5

  我们用矩阵来解决这个问题。首先,我们把物品和背包的容量组成如下矩阵:

物品(i)/重量(w) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 (w=2, v=3) 0 0

a: 3+[0][2-2]=3+0

b: [0][2]=0

max(3+0,0)=3

a: 3+[0][3-2]=3+0

b: [0][3]=0

max(3+0,0)=3

a: 3+[0][4-3]=3+0

b: [0][4]=0

max(3+0,0)=3

a: 3+[0][5-3]=3+0

b: [0][5]=0

max(3+0,0)=3

2 (w=3, v=4) 0 0 3

a: 4+[1][3-3]=4+0

b: [1][3]=3

max(4+0,3)=4

a: 4+[1][4-3]=4+0

b: [1][4]=3

max(4+0,3)=4

a: 4+[1][5-3]=4+3

b: [1][5]=3

max(4+3,3)=7

3 (w=4, v=5) 0 0 3 4

a: 5+[2][4-4]=5+0

b: [2][4]=4

max(5+0,4)=5

a: 5+[2][5-4]=5+0

b: [2][5]=7

max(5+0,7)=7

  为了便于理解,我们将矩阵kS的第一列和第一行忽略(因为它们表示的是容量0和第0个物品)。然后,按照要求往矩阵的格子里填数。如果当前的格子能放下对应的物品,存在以下两种情况:

  • a - 放入当前物品,然后剩余的重量再放入前一个物品
  • b - 不放入当前物品,放入前一个物品

  在上面的表格中,

  1. 当背包的重量为1时,没有物品能放入,所以都是0,这个很好理解。
  2. 当背包的重量为2时,物品1可以放入,那么存在两种情况:放入物品1(价值为3),剩余的重量(背包的重量2减去物品1的重量2,结果为0)再放入前一个物品;不放入物品1,放入前一个物品[0][2],价值为0。所以最大价值就是max(3, 0)=3。
  3. ......
  4. 当背包的重量为5时,放入物品2,两种情况:放入物品2(价值为4),剩余的重量(背包的重量5减去物品2的重量3,结果为2)再放入前一个物品,是[1][2],对应的价值是3;不放入物品2,,放入前一个物品[1][5],价值为3。所以最大价值就是max(4+3, 3)=7。
  5. ......

  如果当前物品不能放入背包,则忽略它,用前一个值代替。我们可以按照上面描述的过程把剩余的格子都填满,这样表格中最后一个单元格里的值就是最优方案。

  下面是具体的实现代码:

function knapSack(capacity, weights, values, n) {
    const kS = [];

    // 将ks初始化为一个空的矩阵
    for (let i = 0; i <= n; i++) {
        kS[i] = [];
    }

    for (let i = 0; i <= n; i++) {
        for (let w = 0; w <= capacity; w++) {
            // 忽略矩阵的第1列和第1行
            if (i === 0 || w === 0) {
                kS[i][w] = 0;
            }
            else if (weights[i - 1] <= w) {
                const a = values[i - 1] + kS[i - 1][w - weights[i - 1]];
                const b = kS[i - 1][w];
                kS[i][w] = Math.max(a, b);
            }
            else
首页 上一页 1 2 3 下一页 尾页 1/3/3
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
上一篇HTML的基本概念 下一篇HTML CSS的中英文对照

最新文章

热门文章

Hot 文章

Python

C 语言

C++基础

大数据基础

linux编程基础

C/C++面试题目