Beans
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2596 Accepted Submission(s): 1279
Problem Description Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.
Now, how much qualities can you eat and then get ?
Output For each case, you just output the MAX qualities you can eat and then get.
Sample Input
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
Sample Output
242
Source 2009 Multi-University Training Contest 4 - Host by HDU
Recommend gaojie | We have carefully selected several similar problems for you: 2830 2577 2870 1159 1176
这道题意思可以转换成:对每一行,不能有间隔的取一个子序列,即取该行的最大不连续子序列和;再从上面所有值中,取其最大不连续子序列和;就相当于隔一行取了
状态:f[i]表示取第i个元素(a[i]必取)的最大值,map[i]表示取到a[i](可不取)时的最大值状态转移:f[i]=map[i-2]+a[i];map[i]=max{map[i-1],f[i]};
#include#include using namespace std ; #define M 200001 int vis [M ],map [M ],dp [M ],f [M ]; int max (int a [],int n ) //求在a[]中最大不连续子序列和。 { int i ; f [0 ]=map [0 ]=0 ; f [1 ]=map [1 ]=a [1 ]; for(i =2 ;i <=n ;i ++) //要保证i-2不会数组越界。 { f [i ]=map [i -2 ]+a [i ]; //因为要隔一个取,所以取了a[i],就不能取a[i-1],所以最大值就是前i-2个数的最大值+a[i]. map [i ]=f [i ]>map [i -1 ]?f [i ]:map [i -1]; //如果取a[i]要更大,更新map[i]的值。 } return map [n ]; } int main(int i ,int j ,int k ) { int n ,m ,tot ,cur ; while(scanf ("%d%d" ,&n ,&m )!=EOF &&n &&m ) { for(i =1 ;i <=n ;i ++) { for(j =1 ;j <=m ;j ++) scanf ("%d" ,&vis [j ]); dp [i ]=max (vis ,m ); } printf ("%d\n" ,max (dp ,n )); } return 0 ; }