?
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.
OJ's undirected graph serialization:
Nodes are labeled uniquely.
We use# as a separator for each node, and
, as a separator for node label and each neighbor of the node.
?
As an example, consider the serialized graph {0,1,2#1,2#2,2}.
The graph has a total of three nodes, and therefore contains three parts as separated by #.
- First node is labeled as
0. Connect node0to both nodes1and2. - Second node is labeled as
1. Connect node1to node2. - Third node is labeled as
2. Connect node2to node2(itself), thus forming a self-cycle.?
Visually, the graph looks like the following:
1 / \ / \ 0 --- 2 / \ \_/
?
给出一个无向连通图,要求复制
?
基本思路:
对图的遍历,采取广度优先或者深度优先。
遍历时,需要记住已访问的结点。避免重复访问。这功能可以和下面的map重用。
另外需要一个map, 映射,当前节点,和其对应的复制节点。
访问每一个节点时,需要复制其邻接边。对题目来讲,就是复制其 neighbours数组。
当边所引用的节点不存在时,需要创建此结点。
?
以下深度优先实现方式。在leetcode上实际执行时间为 72ms。
?
/** * Definition for undirected graph. * struct UndirectedGraphNode { * int label; * vectorneighbors; * UndirectedGraphNode(int x) : label(x) {}; * }; */ class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if (!node) return node; stack s; unordered_map m; s.push(node); auto root = new UndirectedGraphNode(node->label); m[node] = root; while (!s.empty()) { node = s.top(); s.pop(); auto node_copy = m[node]; for (auto neighbor: node->neighbors) { auto ? = m[neighbor]; if (!copy) { s.push(neighbor); copy = new UndirectedGraphNode(neighbor->label); } node_copy->neighbors.push_back(copy); } } return root; } };
广度优先实际方式。在leetcode上执行时间为76ms。?
即将上面算法的stack换成了queue。
?
class Solution { public: UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) { if (!node) return node; queueq; unordered_map m; q.push(node); auto root_copy = new UndirectedGraphNode(node->label); m[node] = root_copy; while (!q.empty()) { node = q.front(); q.pop(); auto node_copy = m[node]; for (auto neighbor: node->neighbors) { auto ? = m[neighbor]; if (!copy) { q.push(neighbor); copy = new UndirectedGraphNode(neighbor->label); } node_copy->neighbors.push_back(copy); } } return root_copy; } };
?