旋转数组的特点:
(1)递增排序的数组旋转之后的数组可划分为两个排序的子数组;
(2)前面的子数组的元素都大于或等于后面子数组的元素;
(3)最小的元素刚好是两个子数组的分界线;
(4)旋转数组在一定程度上是有序的;
?????? 在有序的数组中可以用二分查找实现O(logn)的查找,我们也可用二分查找的思想寻找旋转数组的最小数字。
思路:
1. 设置两个指针,初始状态第一个指针指向前面子数组的第一个元素,第二个指针指向后面子数组的最后一个元素;
2. 找到两个指针的中间元素;
3.若其大于等于第一个指针指向的元素,则说明其在前面的子数组中,且显然最小元素在中间元素的右边,若其小于等于第二个指针指向的元素,则说明其在后面的子数组中,且显然最小元素在中间元素的左边。
如此,便可以缩小搜索范围,提高时间复杂度,最终第一个指针指向前面子数组的最后一个元素,而第二个指针指向后面子数组的第一个元素,它们处于相邻位置,而第二个指针指向的刚好是最小的元素。
注意:当两个指针指向的数字及它们中间的数字三者相等时,无法判断中间数字位于前面的子数组还是后面的子数组,也就无法移动两个指针来缩小查找的范围,此时只能用顺序查找的方法。
例如:数组{1,0,1,1,1}和数组{1,1,1,0,1}都可看成是递增数组{0,1,1,1,1}的旋转。第一种情况,中间数字位于后面的子数组,第二种情况,中间数字位于前面的子数组。
?
?
(5)按旋转规则,第一个元素应该是大于或等于最后一个元素的;
????? 但也有特例:若把排序数组的前0个元素搬到最后面,及排序数组本身,仍是数组的一个旋转,此时数组中的第一个数字是最小的数字。
?
?
C++代码(不完全正确):
#include "stdafx.h" #includeusing namespace std; int BinarySearch_MinNumInRotateArr(int *nArr, int nLength) { if (nArr!=NULL && nLength>0) { int low = 0; int high = nLength - 1; int mid = 0; while ((low+1) != high) { mid = low + ((high - low) >> 1); if (nArr[low] == nArr[high] && nArr[low] == nArr[mid]) { int min = nArr[low]; for (int i=low+1; i<=high; i++) { if (min > nArr[i]) { min = nArr[i]; } } return min; } if (nArr[mid] >= nArr[low]) { low = mid; } else if (nArr[mid] <= nArr[high]) { high = mid; } } return nArr[high]; } else { cout << "数组为空!" << endl; return -1; } } int _tmain(int argc, _TCHAR* argv[]) { int nArr1[5] = {3,4,5,1,2}; cout << BinarySearch_MinNumInRotateArr(nArr1, 5) << endl; int nArr2[5] = {1,0,1,1,1}; cout << BinarySearch_MinNumInRotateArr(nArr2, 5) << endl; int nArr3[5] = {1,1,1,0,1}; cout << BinarySearch_MinNumInRotateArr(nArr3, 5) << endl; int nArr4[5] = {1,2,3,4,5};//特例没有正确返回结果 cout << BinarySearch_MinNumInRotateArr(nArr4, 5) << endl; system("pause"); return 0; } #include "stdafx.h" #include using namespace std; int BinarySearch_MinNumInRotateArr(int *nArr, int nLength) { if (nArr!=NULL && nLength>0) { int low = 0; int high = nLength - 1; int mid = 0; while ((low+1) != high) { mid = low + ((high - low) >> 1); if (nArr[low] == nArr[high] && nArr[low] == nArr[mid]) { int min = nArr[low]; for (int i=low+1; i<=high; i++) { if (min > nArr[i]) { min = nArr[i]; } } return min; } if (nArr[mid] >= nArr[low]) { low = mid; } else if (nArr[mid] <= nArr[high]) { high = mid; } } return nArr[high]; } else { cout << "数组为空!" << endl; return -1; } } int _tmain(int argc, _TCHAR* argv[]) { int nArr1[5] = {3,4,5,1,2}; cout << BinarySearch_MinNumInRotateArr(nArr1, 5) << endl; int nArr2[5] = {1,0,1,1,1}; cout << BinarySearch_MinNumInRotateArr(nArr2, 5) << endl; int nArr3[5] = {1,1,1,0,1}; cout << BinarySearch_MinNumInRotateArr(nArr3, 5) << endl; int nArr4[5] = {1,2,3,4,5};//特例没有正确返回结果 cout << BinarySearch_MinNumInRotateArr(nArr4, 5) << endl; system("pause"); return 0; }
不能解决特例数组。
C++代码(正确解决特例):
#include "stdafx.h" #includeusing namespace std; int BinarySearch_MinNumInRotateArr(int *nArr, int nLength) { if (nArr!=NULL && nLength>0) { int low = 0; int high = nLength - 1; int mid = low; while (nArr[low] >= nArr[high]) { if (high - low == 1) { mid = high; break; } mid = low + ((high - low) >> 1); if (nArr[low] == nArr[high] && nArr[low] == nArr[mid]) { int min = nArr[low]; for (int i=low+1; i<=high; i++) { if (min > nArr[i]) { min = nArr[i]; } } return min; } if (nArr[mid] >= nArr[low]) { low = mid; } else if (nArr[mid] <= nArr[high]) { high = mid; } } return nArr[mid]; } else { cout << "数组为空!" << endl; return -1; } } int _tmain(int argc, _TCHAR* argv[]) { int nArr1[5] = {3,4,5,1,2}; cout << BinarySearch_MinNumInRotateArr(nArr1, 5) << endl; int nArr2[5] = {1,0,1,1,1}; cout << BinarySearch_MinNumInRotateArr(nArr2, 5) << endl; int nArr3[5] = {1,1,1,0,1}; cout << BinarySearch_MinNumInRotateArr(nArr3, 5) << endl; int nArr4[5] = {1,2,3,4,5}; cout << BinarySearch_MinNumInRotateArr(nArr4, 5) << endl; int *nArr5 = NULL; cout << BinarySearch_MinNumInRotateArr(nArr5, 5) << endl; system("pause"); return 0; } #include "stdafx.h" #include using namespace std; int BinarySearch_MinNumInRotateArr(int *nArr, int nLength) { if (nArr!=NULL && nLength>0) { int low = 0; int high = nLength - 1; int mid = low; while (nArr[low] >= nArr[high]) { if (high - low == 1) { mid = high; break; } mid = low + ((high - low) >> 1); if (nArr[low] == nArr[high] && nArr[low] == nArr[mid]) { int min = nArr[low]; for (int i=low+1; i<=high; i++) { if (min > nArr[i]) { min = nArr[i]; } } return min; } if (nArr[mid] >= nArr[low]) { low = mid; } else if (nArr[mid] <= nArr[high]) { high = mid; } } return nArr[mid]; } else { cout << "数组为空!" << endl; return -1; } } int _tmain(int argc, _TCHAR* argv[]) { int nArr1[5] = {3,4,5,1,2}; cout << BinarySearch_MinNumInRotateArr(nArr1, 5) << endl; int nArr2[5] = {1,0,1,1,1}; cout << BinarySearch_MinNumInRotateArr(nArr2, 5) << endl; int nArr3[5] = {1,1,1,0,1}; cout << BinarySearch_MinNumInRotateArr(nArr3, 5) << endl; int nArr4[5] = {1,2,3,4,5}; cout << BinarySearch_MinNumInRotateArr(nArr4, 5) << endl; int *nArr5 = NULL; cout << BinarySearch_MinNumInRotateArr(nArr5, 5) << endl; system("pause"); return 0; }
?