题目:
?
Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start ="hit"
end ="cog"
dict =["hot","dot","dog","lot","log"]As one shortest transformation is
"hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length5.Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
?
解题思路:采用BFS搜索。每个节点采用pair表示,每个pair的第一个元素是字符串本身,第二个元素是所在层次。?
代码:
?
class Solution { public: int ladderLength(string start, string end, unordered_set&dict) { queue > WordCandidate; if(start.empty()||end.empty())return 0; int size=start.size(); if(start==end)return 1; WordCandidate.push(make_pair(start,1)); while(!WordCandidate.empty()){ pair CurrWord(WordCandidate.front()); WordCandidate.pop(); for(int i=0;i 0){ WordCandidate.push(make_pair(CurrWord.first,CurrWord.second+1)); dict.erase(CurrWord.first); } swap(c,CurrWord.first[i]); } } } return 0; } };
?