计算几何+最短路
最短路是套的模版。。= =
毕竟不是自己写的。。模版上的点竟然是从0开始的。
难在建图。图中,比如2和12点,其间如果没有任何线段阻挡,那么边权是他们的直线距离,如果有线段阻挡,边权是inf。
枚举每两个点,用其组成的线段与其他所有线段判断,如果相交则边权inf,如果不相交距离是其直线距离。
#include#include #define eps 1e-8 #define zero(x) (((x)>0 (x):-(x)) eps; } //判两点在线段异侧,点在线段上返回0 bool opposite_side(point p1, point p2, line l) { return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps; } //判两直线平行 bool parallel(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y)); } //判两直线垂直 bool perpendicular(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y)); } //判两线段相交,包括端点和部分重合 bool intersect_in(line u, line v) { if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b)) return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u); return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u); } bool intersect_ex(line u, line v) { return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u); } //单源最短路径,bellman_ford算法,邻接阵形式,复杂度O(n^3) //求出源s到所有点的最短路经,传入图的大小n和邻接阵mat //返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1 //可更改路权类型,路权可为负,若图包含负环则求解失败,返回0 //优化:先删去负边使用dijkstra求出上界,加速迭代过程 #define MAXN 200 #define inf 1000000000 typedef double elem_t; int bellman_ford(int n, elem_t mat [][MAXN], int s, elem_t* min, int* pre){ int v[MAXN], i, j, k, tag; for (i = 0; i < n; i++) min[i] = inf, v[i] = 0, pre[i] = -1; for (min[s] = 0, j = 0; j < n; j++){ for (k = -1, i = 0; i < n; i++) if (!v[i] && (k == -1 || min[i] < min[k])) k = i; for (v[k] = 1, i = 0; i < n; i++) if (!v[i] && mat[k][i] >= 0 && min[k] + mat[k][i] < min[i]) min[i] = min[k] + mat[pre[i] = k][i]; } for (tag = 1, j = 0; tag && j <= n; j++) for (tag = i = 0; i < n; i++) for (k = 0; k < n; k++) if (min[k] + mat[k][i] < min[i]) min[i] = min[k] + mat[pre[i] = k][i], tag = 1; return j <= n; } int main() { line l[100]; point p[200]; int n; while (std::cin >> n && (n != -1)) { int j = -1; int k = 0; p[0].x = 0.0, p[0].y = 5.0; for (int i = 0; i < n; i++) { double a, b, c, d, e; std::cin >> a >> b >> c >> d >> e; l[++j].a.x = a, l[j].a.y = 0.0; l[j].b.x = a, l[j].b.y = b; l[++j].a.x = a, l[j].a.y = c; l[j].b.x = a, l[j].b.y = d; l[++j].a.x = a, l[j].a.y = e; l[j].b.x = a, l[j].b.y = 10.0; p[++k].x = a, p[k].y = 0.0; p[++k].x = a, p[k].y = b; p[++k].x = a, p[k].y = c; p[++k].x = a, p[k].y = d; p[++k].x = a, p[k].y = e; p[++k].x = a, p[k].y = 10.0; } p[++k].x = 10.0, p[k].y = 5.0; /*for (int i = 0; i <= j; i++) { std::cout << l[i].a.x << ' ' << l[i].a.y << " to " << l[i].b.x << ' ' << l[i].b.y << std::endl; } for (int i = 1; i <= k; i++) { std::cout << i << ' '<